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Taming Computer Chaos in the Classroom 
with HP Classroom Manager 

 
A new school day starts, Ms. Andrews welcomes her students as they rush into the classroom 

and scurry to turn on their computers. She begins her lesson in geometric proofs to the class, but 
suddenly 3 students start giggling in the back row, looking at someone’s computer screen. She asks 
them to stop but then sees a student near the front row laughing at a YouTube video… its classroom 
chaos! What could others be up to… checking out Facebook photos, updating their Twitter, chatting 
with their friend in the front row? What can Ms. Anderson do to stop them? She can’t disrupt the whole 
class to check her students’ screens, and has no way to ensure they are viewing the correct website she 
wrote on the whiteboard. So she goes about her lesson, wishing she could do more to monitor their 
activity, secretly hoping the pop quiz later that evening will give her some answers…  

 
As our world becomes more and more dependent on technology, so do our classrooms. With 

desktops, laptops, and tablets rapidly becoming the norm for students, educators have infinite 
possibilities to make teaching truly engaging but are also having to address the issues technology 
presents in the classroom. The scenario above is all too common in many schools today, but Classroom 
Management software now provides the best way to enhance the benefits of technology for students 
and educators. With HP’s new software, HP Classroom Manager, teachers can take control of the 
classroom, manage activity in all class PCs, and develop unique ways to communicate with students all 
while making IT management cost effective and easy for school administrators.  

 
Through PC management and an arsenal of interactive teaching tools, HP Classroom Manager 

redefines the digital classroom, preventing unwanted distractions and enhancing learning to elevate 
student achievement levels: 
 
View and manage multiple student PCs at one time 
 

• Easily view an entire classroom of PCs at one time  
• Watch, share, or control the screen of any student PC 
• Add names to student screens and arrange them to appear as they do in class 
• Send and receive instant messages and alerts 
• Initiate group or 1:1 chats 
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Control PCs in the classroom 
 

• Power on or off all classroom computers from the teacher PC. 
 

• Lock or black out student PCs with a single click. 
 

• Specify allowed or restricted websites to limit internet activity. 
 

• Open or close specified programs and application on one or multiple computers. 
 

• Nominate a student to be assigned teacher rights and act as a Group Leader whenever desired  
 

• Remotely launch applications, specific documents or websites instantly with the Quick Launch feature 
 
 
 
 
 
 
 
 
 
 
 
 
 
Enrich learning 
 

• Easily share digital content including pictures, documents, and videos 
 

• Administer quizzes and surveys in real-time with instant reports and scoring 
 

• Enable creative learning in “game show” style with the Question and Answer feature 
 

• Create digital journals of a day’s lessons for student revision and lesson plan management 
 

• Enrich language lab learning with audio monitoring and recording tools 
 

• Design tests and exams with minimum of effort, including text, picture, audio and video questions. 
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Make IT management easy and cost efficient 
 

• Monitor all computers across the school network in a single view. 
 

• Control printer and connected devices such as keyboards and USB flash drives. 
 

• Power on, Power off, Reboot and Login to classroom computers remotely.  
 

• Monitor all computers across the school network in a single view.  
 

• Set Security Policies to identify computers without anti-virus, Windows updates or 
Internet protection. 

 

• Secure teacher profiles each allowing customized levels of functionality as required.   
 

• Use the Policy Management tool to apply restrictions permanently across the school. 
 

 

 

 
 
HP Classroom Manager can be deployed and used across multiple Windows-based platforms, 

including desktops, laptops and workstations. Its features lower electricity costs, reduced printing 
accidents and helps ensure PC security, immediately cutting costs to schools.  

 
And with HP Classroom Manager’s easily scalable low cost per seat, it’s a win-win for students, 

teachers and school administrations.   
 

For more information on HP Classroom Manager and to download a free 30 day trail, visit 
www.hp.com/go/hpclassroommanager.  
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Continued Fractions: 
A Step-by-Step Tutorial, with User RPL Implementations 

 
Joseph K. Horn  

 
 

Table of contents 
 

I. How to convert decimal fractions & simple fractions into continued fractions. 
A. Step-by-step example. 
B. Generalized method. 
C. User RPL implementation: 

i. ‘→SF‘ (decimal fraction to Simple Fraction) 
ii. ‘→CF‘ (simple fraction to Continued Fraction) 

II. How to convert continued fractions into simple fractions & decimal fractions. 
A. Step-by-step example. 
B. Generalized method. 
C. User RPL implementation: ‘CF→‘ (continued fraction to simple fraction.) 

III. Fun application:  42.86% responded “Yes” on an opinion poll. How many people responded? 
IV. Glossary. 

 
 

Chapter I 
How to convert decimal fractions & regular fractions into continued fractions. 

 
Part A: Step-by-step example. 
 
Example: Convert the terminating decimal 3.1416 into its exactly equivalent continued 
fraction. 
 

Step 1: Rewrite 3.1416 as an equivalent simple fraction: 31416
10000

.  Reduce it: 3927
1250

. 

Step 2: Rewrite that as a mixed number: 177
0

3
125

+ . 

Step 3: Remove the integer part: 177
1250

. 

Step 4: Reciprocate: 1250
777

. 

Repeat steps 2 through 4 until no fraction part remains: 

 1250 11
777 7

7
17

= + . 
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 11 677 1
11 11

= + . 

 
 11, stop. 
 
Step 5:  Write all the integer parts (in red above) in a list: {3, 7, 16, 11}. Done. 
 
Answer: 3.1416 is exactly equivalent to the continued fraction {3, 7, 16, 11}. 
 

Note: The notation “{3, 7, 16, 11}” is mathematical shorthand for 3
7

16
1

1
1

1
1

+
+

+

. 

 
Part B: Generalized method. 
 
To convert a decimal fraction or a simple fraction into a continued fraction: 
 
Step 1: If you have a decimal fraction, rewrite it as a simple fraction.  Reduce the simple 
fraction. 
Step 2: Rewrite it as a mixed number. 
Step 3: Remove the integer part. 
Step 4: Reciprocate. 

Repeat steps 2-4 until no fraction part remains. 
Step 5: Write all the integer parts in a list.  Done. 
 
 
Part C: RPL implementation. 
 
Step 1: Convert a decimal fraction into an equivalent reduced Simple Fraction: 
 
« IF DUP FP THEN 11. OVER XPON - ALOG SWAP OVER * R→I 
SWAP R→I SIMP2 END » 
DUP ‘→SF‘ STO 
BYTES    65.5 #94E9h 
 
This creates a program called ‘→SF‘ (“to Simple Fraction”). 
Input: Any decimal fraction (a floating point number w/ non-zero fractional part). 
Output: Equivalent Simple Fraction. 
 

Example: 3.14159265359 →SF    
314159265359

100000000000
. 

 
Here’s a method for doing steps 2 through 5 manually: 
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Step 2: Rewrite the simple fraction as a mixed number: PROPFRAC.  Write down the integer 
part. 
 
Step 3: Remove the integer part: « DUP IP R→I - EVAL » (or just subtract the 
integer that you see in the display, and simplify by pressing EVAL). 
 
Step 4: Reciprocate: INV   (the  key). 
 
Repeat steps 2 through 4 until no fraction part remains. 
 
Step 5: Write the accumulated integer parts in a list.  Done. 
 
Here’s a User RPL program for doing steps 2 through 5 automatically.  It converts any 
simple fraction into its equivalent Continued Fraction in one step: 
 
« FXND DEPTH DUP 1 + ROLLD 
  DO SWAP OVER IDIV2 ROT SWAP DUP 
  UNTIL 0 == 
  END DROP2 DEPTH ROLL DEPTH SWAP - 1 + →LIST » 
DUP ‘→CF‘ STO 
BYTES    81 #C386h 
 
This creates a program called ‘→CF‘ (“to Continued Fraction”). 
Input: Any simple fraction (as an algebraic object). 
Output: Equivalent Continued Fraction (as a list). 
 
Example: ‘13/46‘ →CF    {0 3 1 1 6} 
 

This means that 13 1
14

1

1 1

36
0

1

6

= +
+

+
+

. 

 
Use both programs in sequence to convert a decimal fraction into a continued fraction. 
 
Example: 3.1416 →SF →CF    {3 7 16 11} 
 

This means that 13
7

3.1416 1

1
116
1

= +
+

+
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Chapter II 
How to convert continued fractions into simple fractions & decimal fractions. 

 
Part A: Step-by-step example. 
 
Example: Convert the continued fraction {3 7 16 11} into its equivalent simple fraction and 
decimal fraction. 
 
Step 1: Put list on the stack and press EVAL.  Four stack levels are now occupied. 
 
Step 2: Press  repeatedly until all the numbers are used up.  This converts the shorthand 

notation {3 7 16 11} into the full notation 13 17 116
11

+
+

+

. 

Step 3: Press EVAL and see the answer: 3927
1250

. 

Optional Step 4: To convert that into a decimal fraction, press →NUM and see the answer: 
3.1416. 
 
Part B: Generalized method. 
 
To convert a continued fraction into a simple fraction or a decimal fraction: 
 
Step 1: Put the continued fraction on the stack in list form and press EVAL. 
Step 2: Press  repeatedly until all the numbers are used up. 
Step 3: Press EVAL. See the equivalent simple fraction. 
Optional Step 4: Press →NUM. See the equivalent decimal fraction. 
 
Part C: RPL implementation. 
 
« LIST→ 1 0 1 4 ROLL 
  START OVER 4 ROLL * + SWAP 
  NEXT / » 
DUP ‘CF→‘ STO 
BYTES    47.5 #1900h 
 
This creates a program called ‘CF→‘ (“Continued Fraction out”). 
Input: Any Continued Fraction (as a list). 
Output: Equivalent simple fraction. 
 
To convert the output to a decimal fraction, just press →NUM, of course. 
 
Example: Convert the continued fraction {3 7 16 11} into its equivalent simple fraction and 
decimal fraction. 
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{3 7 16 11} CF→    3927
1250

. 

→NUM    3.1416. 
 
 
 

Chapter III 
Fun application: Opinion Polls 

 
 

Newspapers usually report the results of opinion polls as percentages.  For example, they might 
report that 42.86% of the people in a recent opinion poll responded “Yes.”  This looks 
impressive, subconsciously implying that many people were polled.  Of the very few readers for 
whom that thought actually bubbles into their awareness, most would rationalize that feeling 
thus: “42.86% means that 4286 out of every 10000 people responded Yes,” implying that ten 
thousand people were polled (if not more).  Of those few readers, fewer still would take the 
further step of reducing the fraction 4286

10000  to the equivalent fraction 2143
5000 , thus recognizing that as 

few as 5000 people may have been polled, with 2143 of them responding “Yes.” 
 
However, none of these conclusions are correct, because they ignore the fact that statistics are 
rounded off.  What the newspaper is really saying, therefore, is that the percentage of Yes 
responses may not have been exactly 42.86% at all, but was something which merely rounds to 
42.86%.  Therefore, the actual percentage could have been anything between 42.855% 
(inclusive) and 42.865% (exclusive). 
 
So the question becomes: What is the smallest number of respondents which can make such a 
ratio possible?  In other words, what is the “simplest fraction” (the ratio of the smallest possible 
numbers) in the interval [0.42855, 0.42865)? 
 
The only way to solve that problem is with continued fractions. 
 
First, convert both ends of the interval into a continued fraction.  Let’s use the programs listed 
above. 
 
.42855 →SF →CF    {0 2 2 1 951 1 2} 
.42865 →SF →CF    {0 2 3 259 2 5} 
 
The lists are the same until the third terms.  Truncate the list there, using the smaller number (2 
here) plus 1: 
 
{0 2 3} CF→    ‘3/7‘ 
→NUM    .428571428571 
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As you can see, 3/7 rounded to four decimal places is .4286, so the statistic “42.86%” could 
have been achieved with a polling sample of only SEVEN people, of whom 3 responded “Yes”. 
 
Example #2: 
 
We asked all of the students at Wassamada University whether they preferred vanilla or 
chocolate.  Those who preferred neither were forced to choose one anyway.  68.421% of the 
students responded that they preferred chocolate.  How many students attend Wassamada U?  
Ten thousand, as the statistic seems to imply?  Not necessarily.  What is the “simplest fraction” 
in the interval [.684205, .684215)? 
 
.684205 →SF →CF    {0 1 2 6 501 10 2} 
.684215 →SF →CF    {0 1 2 5 1 618 2 1 5} 
Truncate the list where they begin to differ, using the smaller number (5 here) plus 1:  
{0 1 2 6} CF→    ‘13/19‘ 
 
13
19

 is therefore the simplest fraction that rounds to 68.421%.  Therefore it’s statistically possible 

that Wassamada U has only 19 students, of whom 13 prefer chocolate. 
 
The rule “Truncate the lists where they begin to differ and use the smaller number plus one” 
might sound peculiar.  Here’s a good example of that rule in action:  What is the “simplest 

fraction” between 21
31

 and 41
61

, non-inclusive? 

 
‘21/31‘ →CF    {0 1 2 10} 
‘41/61‘ →CF    {0 1 2 20} 
Truncate the list where they begin to differ, and use the smaller number (10 here) plus 1: 
{0 1 2 11} CF→    ‘23/34‘ 

Therefore 23
34

 is the “simplest fraction” between 21
31

 and 41
61

, that is to say, every other fraction 

in that interval has a numerator larger than 23 and a denominator larger than 34. 
 
Homework: Find the simplest fraction between π  and 10 .  Hint: you already know it. 
 
 
 

Chapter IV 
Glossary 

 
Fraction: The ratio of two numbers; the relation between two similar magnitudes with respect 
to the number of times the first contains the second. 
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Common Fraction: a fraction represented as a numerator above, and a denominator below, a 

horizontal line, e.g. π
φ

, or a diagonal line, e.g. π φ  or π φ .  The line is known as a “virgule”, 

“solidus”, “slash”, or “stroke”, but is usually read as “over” (e.g. πφ  is read “pi over phi”) or 

“divided by” (“pi divided by phi”).  Children are taught to use a special “division sign” instead 
of a slash (e.g. 6 2 3÷ = ), but this sign is rarely used in higher math, even though it appears on 
the division key of even the most advanced handheld calculators.  Children are also taught to 

represent 126 2 63÷ =  as 
63

2 126 , and read it as “2 goes into 126, 63 times.” 

Decimal Fraction: a fraction whose denominator is some power of 10, and is represented by a 
dot (“decimal point” or “point”) (or a comma in Europe and some other places) written with the 
numerator, e.g. 0.75 which is equivalent to the simple fraction 75

100 .  In RPL calculators, decimal 
fractions are called “reals”.  In common parlance they are called “floating point numbers”. 
Simple Fraction:  the ratio of an integer to a natural number, e.g. 22

7 .  According to this strict 
definition, the numerator may be zero or negative, but not the denominator. 
Compound Fraction: a fraction whose numerator and/or denominator contain one or more 
fractions. 
Integer: A number with no fractional part; a member of the set {… -2, -1, 0, 1, 2, …}. 
Whole Number: A non-negative integer; a member of the set {0, 1, 2, …}. 
Natural Number: A non-zero whole number; a member of the set {1, 2, 3, …}, which is also 
known as the set of “Counting Numbers”. 
Proper Fraction: a fraction whose numerator is less than the denominator, e.g. 7

11 . 
Improper Fraction: a fraction whose numerator is greater than the denominator, e.g. 11

7 . 
Mixed Number: the sum of an integer and a proper fraction, e.g. 1

73+ . 
Continued Fraction: a compound fraction whose denominator contains a fraction whose 

denominator contains a fraction, and so on, e.g. 
4
5

21
3

+
+

 which is equivalent to the simple 

fraction 29
19 .  Continued fractions can contain a finite or infinite number of fractions. 

Simple Continued Fraction: a continued fraction all of whose numerators are 1, e.g. 

7
1

5 1
3

+
+

.  Mathematical shorthand notation for simple continued fractions is a list of just the 

integer parts, ignoring the numerators which are always 1; the above example would be written 
as {5, 3, 7}. 
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Rational Number: A number which can be represented as a simple fraction, e.g. the 
terminating decimal 0.5 which can be represented as 1

2 , or the repeating decimal 0.3  which can 
be represented as 1

3 .  All rational numbers can be represented as either a terminating decimal or 
a repeating decimal. 
Irrational Number: A number which cannot be represented as a simple fraction, e.g. π , which 
is not exactly equal to any simple fraction.  When represented as decimal fractions, irrational 
numbers neither terminate nor repeat.  However, the continued fraction representation of some 
irrational numbers repeat (e.g. the square roots of non-square whole numbers); some contain 
some other non-repeating but obvious pattern (e.g. Euler’s constant e); and some seem utterly 
patternless (e.g. π ). 
Terminating Decimal: A decimal fraction which has a finite number of non-zero digits, e.g. 
0.125 (equal to 1

8 ).  Also known as a “finite decimal.” 
Non-terminating Decimal: A decimal fraction which contains an infinite number of non-zero 
digits, e.g. π  or 1

7 , neither of which terminate when written as a decimal fraction.  Also known 
as an “infinite decimal.” 
Repeating Decimal: a decimal numeral that, after a certain point, consists of a group of one 
or more digits repeated ad infinitum, e.g. 1.234(with the overscore meaning that those digits 
repeat forever; this example is equal to 611

495 , and can also be represented as 1.2343434…, with 
the ellipsis meaning “and so on”). Also known as a “circulating decimal”, “periodic decimal”, 
and “recurring decimal.” 
Simplest Fraction: The unique simple fraction with the smallest numerator and denominator 
which lies within a given interval. For example, the simplest fraction within the interval 

0.0005π ±  is 267
85 , because all the other simple fractions in that interval have larger numerators 

and denominators.  The simplest fraction in the interval [.4, .6] is obviously ½.  The simplest 
fraction in the interval [.12345, .12346] is 10

81 , which is less obvious, but is easily calculated 
using continued fractions, as shown in Chapter III above. 
PDQ Algorithm: A method for calculating the simplest fraction in any given interval, 
performing all calculations on the integer domain, thus avoiding all round-off errors. Discovered 
by Joseph Horn (impatient Number Theory student), and optimized by Rodger Rosenbaum 
(patient Number Theory master) and Tony Hutchins (inveterate RPL programmer).  It solves the 
Wassamada U example above in one step, like this: 
.68421 .000005 PDQ  ‘13/19‘ 
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QUIZ - How Well Do You Know RPN? 
Richard J. Nelson 

 

Introduction 
 

The most distinctive feature of HP calculators is the use (on many models) of RPN(1).  Since HP RPN is 
older (40 years) than many current HP people it is understandable that RPN has evolved with subtle 
changes.  These changes have been previously documented, explained, and defined in HP Solve issue 
#27, page 42 in an article titled HP RPN Evolves.  This article differentiated RPN as either classical RPN 
or ENTRY RPN.   
 
Today HP more broadly defines RPN  based on the general post fix logic used for problem solving rather 
than as an automatic stack based on specific rules(2).  How well do you know (classical) RPN?  Take the 
following quiz and then get your rating at the end of this column.  It will be fun and I promise that you 
will learn something.  Each question is worth one point. 
 
The Quiz 
 

Do not refer to any references other than a piece of blank paper, a pen, and your favorite Classical RPN 
calculator.  Each answer is worth one point.  The five classical RPN commands are:  ENTER, ↑;  ; 
R↓; LAST X; and R↑. 
 
1. The value of the Golden ratio is:  .  The pressed keys to calculate the positive value are:  1, 

ENTER, 5, , +, 2, ÷  is  7 ks.  For a very easy point write a sequence that saves one keystroke. 
 

      ANS:  ____________________________ 
 
2.  Two Resistors (R1 & R2) connected in parallel have a total equivalent resistance, RT, as follows. 
 

   
 
Assuming that R1 & R2 are on the stack, how many keystrokes, ks, are required to obtain a solution? 
 
A – 9 ks,   B – 8 ks,   C – 7 ks,   D – 6 ks,   E – 5 ks.                                                                ANS:  _____ 
 

3.   Using a stack diagram as shown below write the keystrokes and stack register contents for your 
answer in question #2. 

 
     ANS:   Step                                   1              2               3              4              5              6               7               8              9  

T ~                   
Z ~                   
Y R2                   
X R1                   

Press Start                   
 

         ~ is don’t care. 
 

4.  How many keystrokes are required to reverse the order of the stack as shown below? 
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T  D  A 
Z  C  B 
Y  B ⇒ C 
X  A  D 
  Start  End 

The shift key of any shifted functions on your favorite RPN machine need not be counted(3).   
 
A – 7 ks,   B – 6 ks,   C – 5 ks,   D – 4 ks,  E – 3 ks.                                                                ANS:  ______ 
 

5.   Using a stack diagram as shown below write the keystrokes and stack register contents for your 
answer in question #4. 

 

ANS:        Step                                   1              2               3              4              5              6               7   
T 4               
Z 3               
Y 2               
X 1               

Press Start               
 

                       ~ is don’t care. 
 

6.   There are two methods (not including data register usage) of using a constant in RPN.  The first is 
replication of the T register.  What is the second?     ANS:  __________________________________ 

 

7.   Is converting a classical RPN program to an ENTRY RPN program easy and always works? 
 

       True or False                                                                                                                      ANS:  ______ 
 

8.   How may you terminate an entry without pressing a function key?   ANS:  _____________________ 
 

9.   An event counter may be accomplished by storing 1’s on the stack and using the T register replication 
feature to add 1 to the X register each time the + key is pressed.  What other technique may be used to 
accomplish the same thing – pressing a key and incrementing a counter?  Programming is not 
allowed.       ANS:  _________________________________________________________________ 

 

10.   Which operator typically does NOT alter the LAST X register? 
   A. +,  B.  -,  C.,  1/X,  D. x,  E. ÷,  F. none.                                                                             ANS:  _____ 

 
Bonus Question 
 

11.   Solve the Mach Equation.   

 
 

    ANS:  _________________ 
 
The answers are after the three notes. 
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____________________________________________________________________________________  
Notes:  Quiz - How Well Do You Know RPN? 
 

 

(1)  RPN is an acronym for Reverse Polish Notation.  Any name beginning with Reverse starts out with a negative 
image for first time encounters with users.  The name is so sensitive that users have been debating about it for 
decades.  A presentation by Wlodek Mier-Jedrzejowicz at HHC 2012 even explored  RPN using a chapter titled 
“Really Pathetic Notation” from the book RCL 20.  See the HHC 2012 Report in HP Solve issue # 29 page 11 
titled Hewlett-Packard Handheld Conference #39.  Note (10) is reproduced below. 

 
(10)  The book is RCL 20.which may be found at:  
        http://www.limov.com/rcl20/ 
 
        Bill Wickes’ article may be found on page 
       105. 
 

       Many (22) of the HPUC leaders contributed  
       To this book. 

 
Fig. 13 – RCL 20 book records the people history of HPCC. 

 
 Here is a video link to Wlodek’s presentation. http://www.youtube.com/watch?v=qRrAj-GCTQM 
 
(2)  A test for the type of RPN an HP machine uses is quoted from the HP Solve article.  “There are two basic 

forms of HP RPN.  Classical RPN and Entry RPN.  While they are very similar overall in that they are both a 
postscript user interface there are subtle differences, a few of which are described.” 

 
“An example of a current model Entry RPN machine is the HP 30b.  If you place the machine in RPN mode, 
and have a clear stack, you may compare the stack operation with a Classical RPN machine such as the HP 
15C.  Press 5, ENTER.  Next press x.  On the 30b you will see 0 because the Y register is zero and 0 x 5 = 0.  
On the 15C you will see 25 because the ENTER, ↑, raised the stack as shown in the three cases above.”   

 
See the article in the issue at the link below.  Table 1 lists of all of HP’s calculators as to which RPN they use.  
Also see Note 2. 

 

        http://h20331.www2.hp.com/hpsub/downloads/HP_Calculator_eNL_04_April_2012%20(2).pdf  
 

(3).  For a table (by Jake Schwartz) of HP calculator stack commands and the keystrokes required to execute them 
see Table 1 (page 5 of 7) in HP Solve issue #4 of the article titled Introduction to RPN Tips V5. 

 
See the Answers on the next page.  Count your points and look up your number in Table 1 at the end. 
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Answers:  RPN Quiz - How Well Do You Know RPN? 
 
Q 1.  By changing the order of the operations the ENTER may be eliminated.  5,  , 1,  +, 2, ÷  is  6 ks. 
 
Q 2 & 3.  Q #2:  Take one point if you answered B, or E. 
                 Q #3:  Take one point if your stack diagram matches one of the three below. 
 
          8 ks solution  Uses stack replication and Last X. 

         Step                                    1              2               3              4              5              6               7                 8   
T ~  ~  R1  R2  R2  R2  R2  R2  R2 
Z ~  R1  R2  R2  R2  R2  R1xR2  R2  R2 
Y R1  R2  R2  R2  R2  R1xR2  R2  R1xR2  R2 
X R2  R2  R2  R1  R1xR2  R2  R1  R2+R1   

Press Start  ↑  ↑  R↑  x    LASTX  +  ÷ 
 

               ~ is don’t care. 
 
          8 ks solution  Uses Last X only. 
 
                              Step                                   1              2               3              4              5              6               7               8 

T ~  ~  R2  R2  R2  R2  ~  ~  ~ 
Z ~  R1  ~  ~  R2  ~  R1xR2  ~  ~ 
Y R1  R2  R1  R2  ~  R1xR2  R2  R1xR2  ~ 
X R2  R2  R2  R1  R1xR2  R2  R1  R2+R1   

Press Start  ↑  R↓    X  R↑  LASTX  +  ÷ 
 

               ~ is don’t care. 
 
         5 ks solution  Uses alternate algebraic form of the equation:  
 

                      
 

                       Step                                    1             2              3                    4                              5 

T ~  ~  ~  ~  ~  ~ 
Z ~  ~  ~  ~  ~  ~ 
Y R1  R1  1/ R2  1/ R2  ~  ~ 

X R2  1/ R2  R1  1/ R1  1/ R2+1/ R1  1/(1/ R2+1/ R1) 
Press Start  1/X    1/X  +  1/X 

 

                         ~ is don’t care. 
 
        Is there a minor accuracy caution that should be considered with this solution? 
 

Q 4 & 5.  Q #4: Take one point if you answered D. 
                 Q #5:  Take one point if your stack diagram matches one of the two below 
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         4 ks solution  Uses Roll Down, R↓ (primary operator on most RPN machines) 
 

             Step                                   1              2               3              4   
T 4  4  2  1  1 
Z 3  3  4  2  2 
Y 2  1  3  4  3 
X 1  2  1  3  4 

Press Start    R↓  R↓   
 
         4 ks solution  Uses Roll Up, R↑ (often not found or is a shifted operator on most RPN machines) 
 

             Step                                   1              2               3              4   
T 4  4  3  1  1 
Z 3  3  1  2  2 
Y 2  1  2  4  3 
X 1  2  4  3  4 

Press Start    R↑  R↑   
 
 

Q 6.  By using the LAST X register.  An example is a currency or other conversion factor.  The Z and T 
registers are retained after multiple uses of the conversion calculation.  See HP Solve  RPN Tip # 
12 in issue 12. 

 

Q 7.  False.  An extra ENTER may be required for many stack operations for more modern machines 
using ENTRY RPN. 

 

Q 8.  By pressing  twice. 
 

Q 9.  By using the statistical function Σ+ key.  The number of data entries is tallied and this may be used as an 
event counter.   See HP Solve  RPN tip # 11 in issue 11. 

 

Q 10.  F.  Test by filling the stack with zero and pressing + to store zero in LAST X.  Perform each  
           operation followed by LAST X. 
 

Q 11.  This is a classical calculator problem that has appeared in many manuals for the earlier HP RPN 
machines and it provides a good test of user RPN skill.  For a complete discussion of all aspects of 
solving this equation see an article titled HP Algebraic by Palmer Hanson in HP Solve Issue #22 
pages 12 - 15.   If you got 0.835724536 take one point.  You probably pressed 61 or more keys - 
62 keys on an HP 35s. 

 
How many points did you get?  Include the bonus point if you answered # 11. Determine your rating from 
the table below. 

Table 1 – Points vs. Skill/title 
 

Points Skill/title  Points Skill/title 
11 or 10 RPN author, Super user  5 or 4 Casual user 
9 or 8 Expert  ≤3 New user 
7 or 6 Average user  0 History major 

 
If you have been an avid reader/student of HP Solve you should be an Average user or better. 
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HP 39gII Regression: Part I 
Exploring Statistical Regression with the HP 39gII 

Namir Shammas 
 

Introduction 
The advent of programmable calculators provided scientists, engineers, mathematicians, and statisticians 
with personal computing devices that performed various statistical calculations. These calculations 
included regression analysis to perform various kinds of curve fitting. The newer machines that appeared 
on the market supported more advanced regression calculations. The HP 39gII follows this trend very 
faithfully. The calculator offers various type of two-variable curve fitting. This includes linear, 
logarithmic, exponential, power, inverse, quadratic, cubic, quartic, trigonometric, logistic, and user-
defined curve fits. This list is versatile and impressive, putting the HP 39gII on par, if not slightly better, 
with other bestselling graphing calculators. The machine also support matrix/vector calculations and 
offers the LSQ function that performs, in one swoop, the core least-squares calculations used in 
regression analysis. This article is the first of a series that explores the HP 39gII regression analysis 
capabilities beyond the built-in regression features. If you like what the HP 39gII already does for two-
variable regressions, you will really enjoy these articles. They are akin to injecting regression steroids in 
the HP 39gII. In this article I discuss the following topics: 
 
1. The basics of working with the LSQ function with matrix/vector calculations to support regression 
calculations. 
 
2. Using an HP 39gII function that calculates and returns the regression coefficients and the coefficient of 
determination of a general multiple regression model. 
 
3. Polynomial regression. 
 
4. Power curve fitting for two or more variables. 
 

 In this series of articles, I use the term regression model to mean the equation that is used in the 
regression calculations to describe the relationship between a dependent variable and one or more 
independent variables. 

The Basics 
The built-in function LSQ(X, y) performs least-squares regression calculations on the matrix X and the 
column vector y. The matrix X has multiple columns that represent values for independent variables 
and/or their transformations (such as natural logarithm, reciprocal, and square, just to name a few). The 
first column in matrix X is typically filled with the constant 1 to allow LSQ to calculate a constant for the 
fitted regression model. The column vector y contains the values of the dependent variable or its 
transformations.  The function LSQ calculates the constant and regression coefficients by evaluating the 
following matrix equation: 
 
LSQ(X,y) = (XT X)-1 (XT y) 
 
The beauty of using matrix/vector operations is that they calculate the matrix and vector containing the 
statistical summations using few high-level operations. Thus, the result of XT X is a matrix that has the  
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statistical summations for the independent variables and/or their transformations. The result of XT y is a 
column vector that contains the statistical summations for the product between the dependent and 
independent variables and/or their transformations.  The matrix expression (XT X)-1 (XT y) solves for the 
regression coefficients. Using the matrix operations reduces significantly the size of the source code 
needed to calculate the regression coefficients. If you read source code for statistical calculations, in 
languages like C++ and Visual Basic, you will be stunned! You will realize how much lower-level coding 
is needed, in these programming languages, to accumulate the values in the various statistical 
summations. You will also recognize how much more coding is needed to calculate the regression 
coefficients! The function LSQ is a wonderful gift from the designers of the HP 39gII. 
 
The simplest case of using function LSQ is to provide it with values from the predefined matrices M0 
through M9. Select one of these matrices to represent the matrix X and another matrix to represent the 
column vector y. The selected matrices would have an equal number of rows of raw data. When using the 
function LSQ inside a program function, its arguments can be locally defined matrices and vectors (which 
are really single-column matrices). Table 1 shows some sample data. The variables x1, x2, and x3 are the 
independent variables. The variable y is the dependent variable. 
 

x1 x2 x3 y 
7 25 6 60 
1 29 15 52 

11 56 8 20 
11 31 8 47 
7 52 6 33 

 

Table 1 – Sample data. 
 
To calculate the coefficients of the following simple multiple regression model: 
 
y = a + b x1 + c x2 + d x3 
 
You need to store the values of y in matrix M1 and the values of the independent variables in matrix M2. 
Figure 1 shows the contents of matrix M1 which stores the values for the column vector y.  
 

 
 

Fig.  1 – The values in matrix M1. 
 
Figure 2 shows the contents of matrix M2 which stores the values for the matrix X.  Notice that the first 
column in matrix M2 is filled with the constant 1. The values for the independent variables occupy 
columns 2, 3, and 4. 
 
Figure 3 shows the result of executing the command LSQ(M2,M1). 
 
The model fitted (with the coefficients rounded to four decimal places) in Figure 3 is: 
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Fig.  2 – The values in matrix M2. 
 
 
 

 
 

Fig.  3 – The results of executing function LSQ. 
 
 
y = 103.4473 – 1.2841 x1 – 1.0370 x2 – 1.3395 x3 
 
I have presented you with a bare-bone example of using the function LSQ. The example is simple 
because it uses the variables without performing any mathematical transformation on them. However, the 
calculations do not indicate how good the model is. One of the popular statistics used to indicate the 
goodness of fit is called the coefficient of determination, R2. This statistic, which is the square of the 
correlation coefficient, indicates the amount of the variance in variable y that is explained by the 
regression model we obtain. When the coefficient of determination is 1, its largest value, we have a 
perfect fit. This means that the regression model accounts for all of the observed values of y. On the other 
extreme, when the coefficient of determination is 0, its smallest value, it means that the regression model 
has completely failed to explain the variation in variable y. The value for R2 is calculated using the 
following equation: 
 

R2 = ∑ (𝑦�𝑖− 𝑦�)2𝑛
1

∑ (𝑦𝑖− 𝑦�)2𝑛
1

 
 

Where 𝑦�𝚤�  is the predicted value of y at the values of the independent variables used in the calculations, 𝑦� 
is the average value of y, and 𝑦𝑖 is the values of y entering in the regression calculations. Keep in mind 
that the coefficient of determination cannot tell how well the regression model can predict values of y that 
are based on new values for the independent variable(s). 
 
First Things First! 
After showing you how to use the function LSQ and presenting the coefficient of determination, let me 
present the function MLR2 which performs the calculations for the regression coefficients and also the 
coefficient of determination. This function is the first step in automating regression analysis calculations. 
Table 2 shows the source code for function MLR2. This function has the following parameters: 
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• The parameter MatX which represents the matrix X. 
• The parameter VectY which represents the vector y. 

 
The function returns a list containing the coefficient of determination and the regression coefficients (as a 
column matrix). 
 

Statement 
EXPORT MLR2(MatX,VectY) 
BEGIN 
  LOCAL i,j,y,Rsqr; 
  LOCAL lstDimX,NumRowsX; 
  LOCAL YMean,Sum1,Sum2,Yhat,RegCoeff; 
 
  // calculate the regression coefficients 
  RegCoeff:=LSQ(MatX,VectY); 
  // calculate the number of data points 
  lstDimX:=SIZE(MatX); 
  NumRowsX:=lstDimX(1); 
  // calculate ymean 
  Sum1:=0; 
  FOR i FROM 1 TO NumRowsX DO 
    y:=VectY(i,1); 
    Sum1:=Sum1+y;   
  END; 
  YMean:=Sum1/NumRowsX; 
 
  // calculate the coefficient of determination 
  Sum1:=0; 
  Sum2:=0; 
  Yhat:=MatX*RegCoeff; 
  FOR i FROM 1 TO NumRowsX DO 
    Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 
    Sum2:=Sum2+(VectY(i,1)-YMean)^2; 
  END; 
  Rsqr:=Sum1/Sum2;   
  // return the results 
  RETURN {Rsqr,RegCoeff}; 
END;  

 

Table 2 –The source code for function MLR2. 
 
The function MLR2 performs the following tasks: 
 

• Calculates the regression coefficients using the function LSQ. The function stores the result of 
function LSQ in the local variable RegCoeff. 

• Calculates the mean for the y values. 
• Calculates the coefficient of determination using the definition I presented in the last section. 

Notice that the function calculates the array of 𝑦� values using the matrix/vector expression  
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• MatX*RegCoeff. This expression multiplies the matrix MatX with the column vector RegCoeff. 
The second FOR loop calculates the sums of squared differences between 𝑦�𝚤�  and 𝑦� and also 
between 𝑦𝑖 and 𝑦�. 

 
Let’s use function MLR2 with the data in Table 1. This time, function MLR2 yields the regression 
coefficients and the coefficient of determination. To use function MLR2 with the data in matrix M1 and 
M2, type the following command: 
 
MLR2(M2,M1))L1 
 
The above command stores the results in list L1 for further examination if so desired. Figure 4 shows the 
results of executing the function MLR2(M2,M1): 
 

 
 

Fig.  4 – The results of executing function MLR2. 
 
The results in Figure 4 show that R2 is 0.99893 and the regression coefficients are the same values 
obtained in the last section. Thus, the fitted model explains 99.89% the variation in the observed values of 
y. This high value is expected since we are fitting five data points with a regression model that has a total 
of four regression coefficients. There is little room for variation in variable y that the model cannot 
explain. 

Polynomial Fitting 
This section presents an HP 39gII function that allows you to perform polynomial regression between two 
variables, x and y. The function calculates the coefficients for the polynomial and also returns the 
coefficient of determination.  
 
Table 3 shows the source code for the function PolyReg. This function has the following parameters: 
 

• The parameter DSMat represents the matrix that has the x and y data. 
• The parameter SelXCol designates the column in matrix DSMat which contains the values for x. 
• The parameter SelYCol designates the column in matrix DSMat which contains the values for y. 
• The parameter Order selects the order for the polynomial regression. If you pass an argument of 1 

to this parameter, the function PolyReg performs a linear regression. Passing values of 2 and 3 to 
the parameter Order causes the function to fit the data with quadratic and cubic polynomials, 
respectively. Remember that the HP 39gII can fit data with up to fourth order polynomials. The 
function PolyReg can perform the same polynomial fits and go beyond. 

 
The function PolyReg returns a list that contains the value of the coefficient of determination and a 
column matrix containing the regression coefficients. I recommend that you store the results of calling  
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function PolyReg in a list so that you can further examine and/or use the results. 
 

Statement 
EXPORT PolyReg(DSMat,SelXCol,SelYCol,Order) 
BEGIN 
  LOCAL i,j,x,y; 
  LOCAL lstDimX,NumRows; 
  LOCAL MatX, VectY, RegCoeff; 
  LOCAL YMean,Sum1,Sum2,Yhat,Rsqr; 
   
  lstDimX:=SIZE(DSMat); 
  NumRows:=lstDimX(1); 
  // initialize matrix and vector 
  MatX:=MAKEMAT(1,NumRows,Order+1); 
  VectY:=MAKEMAT(1,NumRows,1); 
  Sum1:=0; 
  // populate matrix X and vector y with data 
  FOR i FROM 1 TO NumRows DO 
    y:=DSMat(i,SelYCol); 
    x:=DSMat(i,SelXCol); 
    VectY(i,1):=y; 
    Sum1:=Sum1+y; 
    FOR j FROM 1 TO Order DO 
      MatX(i,j+1):=x^j; 
    END;   
  END;  
  // calculate ymean 
  YMean:=Sum1/NumRows; 
  // calculate regression coefficients 
  RegCoeff:=LSQ(MatX,VectY); 
   
  // calculate the sums of squares of  
  // (yhat - ymean) and (y - ymean) 
  Sum1:=0; 
  Sum2:=0; 
  FOR i FROM 1 TO NumRows DO 
    y:=DSMat(i,SelYCol); 
    x:=DSMat(i,SelXCol); 
    Yhat:=RegCoeff(1,1); 
    FOR j FROM 1 TO Order DO 
     Yhat:=Yhat+RegCoeff(j+1,1)*x^j; 
    END; 
    Sum1:=Sum1+(Yhat-YMean)^2; 
    Sum2:=Sum2+(y-YMean)^2; 
  END; 
  // calculate coefficient of determination 
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  Rsqr:=Sum1/Sum2;   
  RETURN {Rsqr,RegCoeff}; 
END; 

 

Table 3 –The source code for function PolyReg. 
 
Let’s use the function PolyReg to fit a cubic polynomial using the data in Table 4. Enter the data in 
matrix M1. 
 

x y 
1 5.1 

1.1 4.4 
1.2 4.6 
1.3 4.0 
1.4 3.2 
1.5 3.2 
1.6 2.4 
1.7 2.2 
1.8 1.3 
1.9 2.0 

 

Table 4 – Sample data for a cubic polynomial fit. 
 
To obtain the regression coefficients and coefficient of determination for the cubic polynomial fit using 
the data in Table 4, execute the following command: 
 
PolyReg(M1,1,2,3)L1 
 
The first argument of calling function PolyReg is the matrix M1 which contains the (x, y) data points. 
The second argument is 1 which tells the function that the values for the independent variable x are in 
column 1 of M1. The third argument is 2, which tells the function that the values for the dependent 
variable y are in column 2 of M1. The last argument is 3, which specifies the order of the sought 
polynomial. I assigned the results to list L1 so that I can examine the results later, if I needed to. Figure 5 
shows the output of using function PolyReg. 
 

 
 

Fig.  5 – The results of executing function PolyReg. 
 
The results show that R2 is 0.953602 and the fitted polynomial is: 
 
y = –14.8721 + 49.3485 x – 38.6364 x2 + 9.0909 x3 

 
The value of R2 indicates that the polynomial explains about 95% of the variation in the values of y. 
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Power Curve Fitting 
Power curve fits allow you to create models where the relations between the logarithmic values of the 
variables are linear. In the case of two variables we have: 
 
y = a xb 

 
Which is the same as the linear form: 
 
ln(y) = ln(a) + b ln(x) 
 
In the case of multiple variables, such as: 
 
y = a x1

b x2
c x3

d 

 
The linear form is: 
 
ln(y) = ln(a) + b ln(x1) + c ln(x2) + d ln(x3) 
 
Creating a program function that performs power curve fits for two or more variables is really simple. The 
HP 39gII function has to translate the input data into logarithmic values and then use the LSQ function 
with the matrix and vector of the logarithmic values. Table 5 shows the source code for the function 
PowerFit. The function PowerFit has two parameters. The first parameter is MatX--the name of the 
matrix that contains the values for the independent variables. The second parameter is VectY—the name 
of the column vector that contains the values for the dependent variable. The function returns a list 
containing the coefficient of determination and the column matrix that stores the regression coefficients. 
 

Statement 
EXPORT PowerFit(MatX,VectY) 
BEGIN 
  LOCAL i,j; 
  LOCAL lstDimX,NumRowsX,NumColsX; 
  LOCAL TMatX,TVectY,RegCoeff,Rsqr; 
  LOCAL YMean,Sum1,Sum2,Yhat; 
 
  // get the number of rows and columns of matrix MatX 
  lstDimX:=SIZE(MatX); 
  NumRowsX:=lstDimX(1); 
  NumColsX:=lstDimX(2); 
  // create matrices to store transformed data 
  TMatX:=MAKEMAT(1,NumRowsX,NumColsX+1); 
  TVectY:=MAKEMAT(1,NumRowsX,1); 
  FOR i FROM 1 TO NumRowsX DO 
    TVectY(i,1):=LN(VectY(i,1)); 
    FOR j FROM 1 TO NumColsX DO 
      TMatX(i,j+1):=LN(MatX(i,j)); 
    END; 
  END; 
  // calculate the regression coefficients 
  RegCoeff:=LSQ(TMatX,TVectY); 
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  // calculate ymean 
  Sum1:=0; 
  FOR i FROM 1 TO NumRowsX DO 
    Sum1:=Sum1+TVectY(i,1);   
  END; 
  YMean:=Sum1/NumRowsX; 
 
  // calculate the coefficient of determination 
  Sum1:=0; 
  Sum2:=0; 
  Yhat:=TMatX*RegCoeff; 
  FOR i FROM 1 TO NumRowsX DO 
    Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 
    Sum2:=Sum2+(TVectY(i,1)-YMean)^2; 
  END; 
  Rsqr:=Sum1/Sum2;   
  // return the results 
  RETURN {Rsqr,RegCoeff}; 
END; 

 

Table 5 –The source code for function PowerFit. 
 
The source code in Table 5 shows that the function PowerFit creates the local matrices TMatX and 
TVectY. The function uses these matrices to store the logarithmic transformations of the data in matrices 
MatX and VectY. The function uses the local matrices TMatX and TVectY to calculate the regression 
coefficients, the mean of the logarithm of y values, and the coefficient of determination. 
 
Let’s test function PowerFit with the data in Table 6. 
 

x z t y 
1 1 7 7 
2 1 5 7.7 
3 2 3 7.9 
4 2 1 5.3 
5 3 2 8.4 
6 3 5 11.6 
7 4 8 13.6 
8 4 9 14.3 
9 5 4 12.4 

10 5 2 10.6 
 

Table 6 – Sample data for a power fit. 
 
Store the values of the first three columns of Table 6 in matrix M1. Store the values of the rightmost 
column of Table 6 in the matrix M2. To calculate the regression coefficient of a power fit between the 
independent variables x, z, t, and the dependent variable y, execute the following command: 
 
PowerFit(M1,M2)L2 
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Figure 6 shows the results of executing the above command. 
 

 
 

Fig.  6 – The results of executing function PowerFit. 
 
The results show that R2 is 0.98063 and the power fit is: 
 
y = 1.34674 + 0.213781026  ln(x) + 0.161625179  ln(z) + 0.3159252  ln(t) 
 
Which also has the following nonlinear form, 
 
y = 3.844878  (x^0.213781026)  (z^0.161625179)  (t^0.3159252) 

 
The value of R2 indicates that the power fit explains about 98% of the variation in the values of y. 
 
About Entering the Source Code 
I found it much easier to enter source code by first using an HP 39gII emulator. You can do that too by 
following these steps: 
 

1. Search the Internet for the HP 39gII emulator software. Download and install the software on your 
PC 

 

2. Using your PC, copy the source code from this and other articles into a text editor of your choice. 
Alternatively you can type in your own source code in a text editor, if you are writing your own 
functions. This step offers a significant time-saver. 

 

3. Turn on the visible spaces in your text editor (choose a text editor that has this feature).  
 

4. Locate and remove any unusual and extended ASCII characters. Also replace tab characters with 
spaces.  

 

5. Save the source code to your PC.  
 

6. Copy all of the source code into the PC’s clipboard buffer.  
 

7. Run the HP 39gII emulator and create the HP 39gII function for the code you wish to insert. 
 

8. Select the new function for editing. 
 

9. Delete all of the default source code that the emulator inserts for the new function. 
 

10. Use the Edit | Paste menu commands in the emulator. This step pastes the source code from the 
clipboard buffer to the emulator. 

 
11. Examine the source code to make sure that the pasting yielded a good listing. You can also use the 

CHECK command to detect errors in the source code. If these errors require minor editing, then  
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12. do so. If not go back to step 3. In most cases, this step goes without any problems. 
 

13. Test the function in the emulator to make sure that it runs correctly. This step may require entering 
data in the predefined matrices. Correct runtime errors if they occur, by examining the source 
code. The CHECK command does not always catch all errors. Common undetected errors include 
(a) a missing colon in an assignment statement and (b) missing semicolons at the end of 
statements. If you are writing your own functions, then any errors in the source code you typed in 
will cause errors to show up in this step or in the last one. 

 
14. Connect your PC to the physical HP 39gII calculator using a USB cable. 

 
15. Select and copy the function from the emulator to the calculator by using the SEND command 

(available in Prgm mode). 
 

16. Verify that the physical HP 39gII calculator shows the function you just copied. 
 
Don’t be intimidated by the number of the above steps. Once you get the hang of it, you can really speed 
up developing HP 39gII programs. The Pascal-like programming language is powerful and allows the HP 
39gII to perform sophisticated calculations.  

Observations and Conclusions 
This article introduced you to regression analysis calculations with the HP 39gII calculator. You learned 
about using the built-in LSQ function. The article also presented functions that prepared the matrices and 
vectors used by LSQ to perform multiple regression, polynomial regression, and power fitting. In 
addition, these functions included code to calculate the coefficient of determination, which indicates the 
goodness of fit. The reader can conclude that the HP 39gII can perform regression calculations with ease 
using the built-in LSQ function and the matrix operations. These operations complement the built-in 
regression models the machine offers for two variables. Moreover, the matrix editor is a suitable tool to 
enter and edit data used in regression calculations. 
 
The next article shows you how to perform linearized regression between two and three variables.  
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HP 39gII Regression: Part II 
Linearized Regression 

Namir Shammas 
 
Introduction 
This article shows you how to perform linearized regression between two and three variables. In addition, 
it presents functions that will help you perform regression analysis calculations on a wide variety of 
custom linearized equations. These functions allow you to select variables from matrices and apply 
temporary transformations that shift, scale, and raise to powers the values of these variables. Thus, these 
functions deliver very flexible transformation schemes. 
 

 In this series of articles, I use the term regression model to mean the equation that is used in the 
regression calculations to describe the relationship between a dependent variable and one or more 
independent variables. 

Linearized Regression for Two Variables 
When fitting equations to data you often need to transform the original equations into a linear form. For 
example, consider the following equation: 
 
y = a xb 
 
The above form can be linearized by taking the natural logarithm of both sides to yield: 
 
ln(y) = ln(a) + b ln(x) 
 
Thus ln(y) and ln(x) have a linear relation. The intercept of that linear relation is ln(a) and the slope is b. 
Thus to calculate the value of a, you need to calculate the exponential value of the intercept. 
 
Consider a second example: 
 
y = a x / (b + x) 
 
Again, you can linearize the above nonlinear equation by taking the reciprocal of both sides and obtaining 
the following linear form: 
 
1/y = 1/a + (b/a) / x 
 
In the above case, 1/y and 1/x have a linear relation. The intercept of that linear relation is 1/a and the 
slope is b/a. Thus to obtain the value of a, you need to calculate the reciprocal of the intercept. To 
calculate the value of b you need to divide the slope by the intercept. 
 
Linearizing relations allow you to use linear or multiple-linear regression to calculate the regression 
coefficients. Keep in mind that the regression coefficients are transformed versions of the coefficients in 
the original nonlinear equations. Thus, you will need to perform a few extra calculations to obtain the 
coefficients of the nonlinear equations. 
 
Table 1 presents the function LinearizedReg. This function supports linearized regression for two 
variables, x and y.  The function has the following parameters: 
 

• The parameter DSMat represents the matrix that has the x and y data. 
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• The parameter lstSelXData is a list that specifies data for variable x. The list contains an integer 
that selects the DSMat column storing values for variable x, and values to shift the values of x, a 
scale value to multiply the values of x, and the power used for variable x. 

• The parameter lstSelYData is a list that specifies data for variable y. The list contains an integer 
that selects the DSMat column storing values for variable y, and a value to shift the values of y, a 
scale value to multiply the values of y, and the power used for variable y. 

 
Both parameters lstSelXData and lstSelYData are lists that have similar contents. The first list element is 
a column index that selects a variable in the DSMat matrix. The second and third list elements are the 
shift and scale values, respectively, used with each of the x and y values. The shift and scale 
transformations use the following equation: 
 
Intermdiate_transformed_variable = scale_value * variable + shift_value 
 
The last list element is the power value used with the above (intermediate) transformed values. The 
argument for this power value can be a negative number, zero, or a positive number. You can use integers 
and non-integer powers. When the argument is zero, the function LinearizedReg treats this argument as a 
special case and applies the natural logarithm to the result of the scaled and shifted values. When the 
argument is not zero, the function applies that argument as the power of the scaled and shifted values. 
Thus, the final transformation for each variable is: 
 
Final_transformed_variable = (scale_value * variable + shift_value)^Power 
 
When the value of Power is not zero. Otherwise, the final transformation is: 
 
Final_transformed_variable = ln(scale_value * variable + shift_value) 
 
This transformation scheme allows you to cover a wide range of transformations without taxing the size 
of the source code. For example you can generate linear, squared, cubed, square-root, cube root 
transformations and all of their reciprocals! If the transformations generate an error, the function 
execution will stop. Experience shows that typical values for the scale and shift are 1 and 0, respectively. 
However, the ability to shift and scale the original observed values, using values other than 1 and 0, may 
well prove to be valuable when you need them! 
 
Let me give you a few examples for the list for parameter lstSelXData. You can use a similar approach 
with the lstSelYData parameter. If you pass the argument {2,0,1,1} to parameter lstSelXData, you tell 
function LinearizedReg that the source values for variable x are in the second column of the data source 
matrix DSMat. You also tell the function that variable x should be transformed using: 
 
x = (1*x + 0)^1 
 
Which basically tells the function LinearizedReg to use the values of variable x as they appear in the 
source data matrix. If you pass the argument {3,1,1.1,0.5} you tell function LinearizedReg that the 
source values for variable x are in the third  column of the data source matrix DSMat. You also tell the 
function that variable x should be transformed using: 
 
x = (1.1*x + 1)^0.5 
 
If you pass the argument {3,2,3,–1} you tell function LinearizedReg that the source values for variable x  
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are in the third  column of the data source matrix DSMat. You also tell the function that variable x should 
be transformed using: 
 
x = (3*x + 2)^(–1) = 1/(3*x+2) 
 
The function LinearizedReg returns a list that contains the value of the coefficient of determination and a 
column matrix containing the regression coefficients. I recommend that you store the results of calling 
function LinearizedReg in a list so that you can further examine and/or use the results. 
 

Statement 
EXPORT LinearizedReg(DSMat,lstSelXData,lstSelYData) 
BEGIN 
  LOCAL i,x,y; 
  LOCAL lstDimX,NumRowsX; 
  LOCAL MatX,VectY,RegCoeff; 
  LOCAL SelXCol,ShiftX,ScaleX,PowerX; 
  LOCAL SelYCol,ShiftY,ScaleY,PowerY; 
  LOCAL Sum1,Sum2,YMean,Yhat,Rsqr; 
   
  lstDimX:=SIZE(DSMat); 
  NumRowsX:=lstDimX(1); 
 
  // get parameters for x 
  SelXCol:=lstSelXData(1); 
  ShiftX:=lstSelXData(2); 
  ScaleX:=lstSelXData(3); 
  PowerX:=lstSelXData(4); 
   
  // get parameters for y 
  SelYCol:=lstSelYData(1); 
  ShiftY:=lstSelYData(2); 
  ScaleY:=lstSelYData(3); 
  PowerY:=lstSelYData(4); 
   
  // create regression matrix and vector 
  MatX:=MAKEMAT(1,NumRowsX,2); 
  VectY:=MAKEMAT(1,NumRowsX,1); 
  // populate matrix and vector 
  FOR i FROM 1 TO NumRowsX DO 
    x:=ScaleX*DSMat(i,SelXCol)+ShiftX; 
    y:=ScaleY*DSMat(i,SelYCol)+ShiftY; 
 
    // transform x 
    IF PowerX==0 THEN 
      x:=LN(x); 
    ELSE 
      x:=x^PowerX; 
    END; 
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    // transform y 
    IF PowerY==0 THEN 
      y:=LN(y); 
    ELSE 
      y:=y^PowerY; 
    END; 
   
    MatX(i,2):=x; 
    VectY(i,1):=y; 
  END; 
  // calculate coefficient of determination 
  RegCoeff:=LSQ(MatX,VectY); 
   
  // calculate ymean 
  Sum1:=0; 
  FOR i FROM 1 TO NumRowsX DO 
    y:=VectY(i,1); 
    Sum1:=Sum1+y;   
  END; 
  YMean:=Sum1/NumRowsX; 
 
  // calculate coefficient of determination 
  Sum1:=0; 
  Sum2:=0; 
  Yhat:=MatX*RegCoeff; 
  FOR i FROM 1 TO NumRowsX DO 
    Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 
    Sum2:=Sum2+(VectY(i,1)-YMean)^2; 
  END; 
  Rsqr:=Sum1/Sum2;   
  RETURN {Rsqr,RegCoeff}; 
END; 

 

Table 1 – The function LinearizedReg. 
 
Let’s use the function LinearizedReg to fit the data in Table 2. Enter the data in matrix M1. 
 

x y 
1 2 
2 14 
3 54 
4 120 
5 237 
6 440 
7 890 
8 1000 
9 1500 

10 2000 
 

Table 2 – Sample data for testing function LinearizedReg. 
 
HP Solve # 30 Page 38                                   Page 4 of 15 



The nonlinear regression model I want to use is: 
 
y = a*(2*x+1)b 
 
The linearized form of the above equation is: 
 
ln(y) = ln(a) + b*ln(2*x+1) 
 
Thus ln(y) and ln(2*x+1) have a linear relation. To obtain the regression coefficients and coefficient of 
determination for data in Table 2, execute the following command: 
 
LinearizedReg(M1,{1,1,2,0},{2,0,1,0})L1 
 
The first argument of calling function LinearizedReg is the matrix M1 which contains the (x, y) data 
points. The second argument is the list {1,1,2,0}. This list tells the function LinearizedReg that values for 
variable x are in the first column of matrix M1. The remaining list elements tell the function that the 
transformed values for variable x are calculated using: 
 
x = ln(2*x+1) 
 
The third argument is the list {2, 0,1,0}. This list tells the function LinearizedReg that values for variable 
y are in the second column of matrix M1. The remaining list elements tell the function that the 
transformed values for variable y are calculated using: 
 
y = ln(1*y + 0) = ln(y) 
 
Figure 1 shows the output of calling function LinearizedReg. 
 

 
 

Fig.  1 – The results of executing function LinearizedReg. 
 
The results show that R2 is 0.996932488 and the fitted polynomial is: 
 
ln(y) = –3.080667377 + 3.55904655 ln(2*x+1) 

 
The value of R2 indicates that the polynomial explains about 99.7% of the variation in the values of y. The 
values of the regression coefficients a and b are 0.045928595 and 3.55904655, respectively. 
 
Linearized Regression for Three Variables 
This section offers the function LinerizedReg3 that performs linearized regression between two 
independent variables, x and z, and the dependent variable y. Function LinerizedReg3 is very similar to 
function LinearizedReg and has the following parameters: 
 

• The parameter DSMat represents the matrix that has the x, z, and y data. 
• The parameter lstSelXData is a list that specifies data for variable x. The list contains an integer  
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that selects the DSMat column storing values for variable x, a value to shift the values of x, a 
scale value to multiply the values of x, and the power used for variable x. 

• The parameter lstSelZData is a list that specifies data for variable z. The list contains an integer 
that selects the DSMat column storing values for variable z, a value to shift the values of z, a scale 
value to multiply the values of z, and the power used for variable z. 

• The parameter lstSelYData is a list that specifies data for variable y. The list contains an integer 
that selects the DSMat column storing values for variable y, a value to shift the values of y, a 
scale value to multiply the values of y, and the power used for variable y. 

 
You can regard function LinerizedReg3 as the big brother of function LinearizedReg. Table 3 shows the 
source code for function LinearizedReg3. 
 

Statement 
EXPORT LinearizedReg3(DSMat,lstSelXData,lstSelZData,lstSelYData) 
BEGIN 
  LOCAL i,x,y,z; 
  LOCAL lstDimX,NumRowsX; 
  LOCAL MatX,VectY,RegCoeff; 
  LOCAL SelXCol,ShiftX,ScaleX,PowerX; 
  LOCAL SelYCol,ShiftY,ScaleY,PowerY; 
  LOCAL SelZCol,ShiftZ,ScaleZ,PowerZ; 
  LOCAL Sum1,Sum2,YMean,Yhat,Rsqr; 
   
  lstDimX:=SIZE(DSMat); 
  NumRowsX:=lstDimX(1); 
 
  SelXCol:=lstSelXData(1); 
  ShiftX:=lstSelXData(2); 
  ScaleX:=lstSelXData(3); 
  PowerX:=lstSelXData(4); 
   
  // get parameters for z 
  SelZCol:=lstSelZData(1); 
  ShiftZ:=lstSelZData(2); 
  ScaleZ:=lstSelZData(3); 
  PowerZ:=lstSelZData(4); 
   
  // get parameters for y 
  SelYCol:=lstSelYData(1); 
  ShiftY:=lstSelYData(2); 
  ScaleY:=lstSelYData(3); 
  PowerY:=lstSelYData(4); 
   
  // create regression matrix and vector   
  MatX:=MAKEMAT(1,NumRowsX,3); 
  VectY:=MAKEMAT(1,NumRowsX,1); 
  // populate matrix and vector 
  FOR i FROM 1 TO NumRowsX DO 
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Statement 
    x:=ScaleX*DSMat(i,SelXCol)+ShiftX; 
    y:=ScaleY*DSMat(i,SelYCol)+ShiftY; 
    z:=ScaleZ*DSMat(i,SelZCol)+ShiftZ; 
     
    // transform x 
    IF PowerX==0 THEN 
      x:=LN(x); 
    ELSE 
      x:=x^PowerX; 
    END; 
     
    // transform z 
    IF PowerZ==0 THEN 
      z:=LN(z); 
    ELSE 
      z:=z^PowerZ; 
    END; 
     
    // transform y 
    IF PowerY==0 THEN 
      y:=LN(y); 
    ELSE 
      y:=y^PowerY; 
    END; 
     
    MatX(i,2):=x; 
    MatX(i,3):=z; 
    VectY(i,1):=y; 
  END; 
  // calculate regression coefficients  
  RegCoeff:=LSQ(MatX,VectY); 
   
  // calculate ymean 
  Sum1:=0; 
  FOR i FROM 1 TO NumRowsX DO 
    y:=VectY(i,1); 
    Sum1:=Sum1+y;   
  END; 
  YMean:=Sum1/NumRowsX; 
 
  // calculate coefficient of determination 
  Sum1:=0; 
  Sum2:=0; 
  Yhat:=MatX*RegCoeff; 
  FOR i FROM 1 TO NumRowsX DO 

 
 
HP Solve # 30 Page 41                                   Page 7 of 15 



Statement 
    Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 
    Sum2:=Sum2+(VectY(i,1)-YMean)^2; 
  END; 
  Rsqr:=Sum1/Sum2;   
  RETURN {Rsqr,RegCoeff}; 
END; 

 

Table 3 – The function LinearizedReg3. 
 
Let’s use the function LinearizedReg3 to fit the data in Table 4. Enter the data in matrix M1. 
 

x z y 
1 1 1.6 
2 1 1.2 
3 2 –0.7 
4 2 –1.9 
5 3 –1.9 
6 3 –3.4 
7 4 –3.0 
8 4 –4.0 
9 5 –2.8 

10 5 –3.5 
 

Table 4 – Sample data for testing function LinearizedReg3. 
 
The regression model I want to use is: 
 
y = a + b*ln(1.5*x+2) + c/(2*z – 1) 
 
Thus ln(y) has a linear relation with ln(1.5*x+2) and 1/(2*z – 1). To obtain the regression coefficients and 
coefficient of determination for data in Table 1, execute the following command: 
 
LinearizedReg3(M1,{1,2,1.5,0},{2,–1,2,–1},{3,0,1,1})L1 
 
The first argument of calling function LinearizedReg3 is the matrix M1 which contains the (x, z, y) data 
points. The second argument is the list {1,2,1.5,0}. This list tells the function LinearizedReg3 that values 
for variable x are in the first column of matrix M1. The remaining list elements tell the function that the 
transformed values for variable x are calculated using: 
 
x = ln(1.5*x+2) 
 
The third argument is the list {2, –1,2, –1}. This list tells the function LinearizedReg3 that values for 
variable z are in the second column of matrix M1. The remaining list elements tell the function that the 
transformed values for variable z are calculated using: 
 
z = 1/(2*z – 1) 
 
The fourth argument is the list {3,0,1,1}. This list tells the function LinearizedReg3 that values for 
variable y are in the third column of matrix M1. The remaining list elements tell the function that the 
transformed values for variable: 
 
y = 1*y + 0 
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That is, to take the values of y from the third column of matrix M1. 
 
Figure 2 shows the output of calling function LinearizedReg3. 
 

 

 
 

Fig.  2 – The results of executing function LinearizedReg. 
 
The results show that R2 is 0.932531686 and the fitted polynomial is: 
 
y = 1.949488869 – 2.100307854  ln(1.5*x+2) + 2.443637745 /(2*z – 1) 

 
The value of R2 indicates that the polynomial explains about 93 % of the variation in the values of y.  
 
Regression Beyond Three Variables 
What about fitting regression models beyond a total of three variables? I could present the function, 
LinearizedReg4 to support regression with four variables. It would look like a version of functions 
LinearizedReg and LinearizedReg3 on steroids!  
 
I decided to take a different approach and present you with a more powerful function. This function can 
handle elaborate regression models such as: 
 
y = a0 + a1 (2x+4)2 + a2 (4z+3)3 + a3 ln(t+1) + a4 (u+3)0.5 + a5 (v+2) 
y = a0 + a1 (2x+4)2 + a2 (3x+3)/(4x+3)3  
y = a0 + a1 (2x+4)2 + a2 (4z+3)3 + a3 ln(t+1)/(3z+7) + a4 (x+1)(3z-5)/(t=7) 
 
The above examples hint at the following features of the next function: 
 

• The ability to handle more than three independent variables. 
• The ability to build regression models with terms that have multiplicative factors. The key word 

here is multiplicative. These factors have transformations of the same or different variables. 
 
Table 5 contains the source code for function MLRX. This powerful and versatile function has the 
following parameters: 
 

• The parameter DSMat specifies the data source matrix containing the dependent and independent 
variables. 

• The parameter MaxTerms designates the number of terms in the regression models (not counting 
the constant term). 

• The parameter TrnfMat specifies the name of the transformations matrix that contains the values 
used to select, transform, and store variables in the internal regression matrix X (stored in variable 
MatX) and vector y (stored in variable VectY). 

 
The parameter TrnfMat is a matrix with six columns. Each row groups the data to select, transform, and  
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store a specific regression variable. The columns of the transformations matrix are: 
 

• Column 1 is the index that selects a regression variable from matrix DSMat. You can select a 
dependent variable or an independent variable. 

• Column 2 specifies the scale value used to multiply the values of the selected variable. 
• Column 3 specifies the shift value used to add to the scaled values of the variable. 
• Column 4 specifies the power value used to raise the scaled and shifted values. If the value in this 

column is zero, the function MLRX calculates the natural logarithm of the scaled and shifted 
values. 

• Column 5 is a numeric switch that tells function MLRX where to store the results of the 
transformed values. When the value of this column is positive, the function stores the transformed 
values in variable MatX. Otherwise, it stores the transformed values in variable VectY. 

• Column 6 specifies the column index of variable MatX where the transformed values are stored. 
The values of this column are relevant only when the corresponding values in Column 5 are 
positive. 

 
You can think of parameter TrnfMat as numerically-coded meta-program (or instruction set) for function 
MLRX. This meta-program tells the function which variable to select, what transformations to apply, and 
where to store the transformation results. Each row in parameter TrnfMat represents a meta-program 
instruction. The totality of these instructions helps the function MLRX to build the data in the variables 
MatX and VectY. 
 
The function MLX returns the coefficient of determination and the vector matrix of the regression 
coefficients. If a value in column 6 of the transformations matrix is greater than the maximum number of 
terms, plus 1, the function MLRX displays an error message box and returns the text “ERROR”. 
 

Statement 
EXPORT MLRX(DSMat,MaxTerms,TrnfMat) 
BEGIN 
  LOCAL i,j,x,Rsqr; 
  LOCAL lstDimX,lstDimT,NumRowsX,NumColsX; 
  LOCAL MatX,VectY,RegCoeff; 
  LOCAL SelXCol,Shift,Scale,PowerX; 
  LOCAL InsMat,InsCol,NumTrnf; 
  LOCAL YMean,Sum1,Sum2,Yhat; 
 
  // calculate the number of data points 
  lstDimX:=SIZE(DSMat); 
  NumRowsX:=lstDimX(1); 
  NumColsX:=lstDimX(2); 
   
  // get the number of transformations 
  lstDimT:=SIZE(TrnfMat);  
  NumTrnf:=lstDimT(1); 
   
  // create the data matrices 
  MatX:=MAKEMAT(1,NumRowsX,MaxTerms+1); 
  VectY:=MAKEMAT(1,NumRowsX,1); 
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Statement 
  FOR j FROM 1 TO NumTrnf DO 
    // get the transformation/insertion parameters 
    SelXCol:=TrnfMat[j,1]; 
    Scale:=TrnfMat[j,2]; 
    Shift:=TrnfMat[j,3]; 
    PowerX:=TrnfMat[j,4]; 
    InsMat:=TrnfMat[j,5]; 
    InsCol:=TrnfMat[j,6]; 
     
    // process all rows for current variable selection, 
    // transformation, and insertion 
    FOR i FROM 1 TO NumRowsX DO 
      // get x 
      x:=DSMat[i,SelXCol]; 
      // transform x by scaling and shifting 
      x:=Scale*x+Shift; 
      // raise x to power or take ln() value 
      IF PowerX==0 THEN 
        x:=LN(x); 
      ELSE 
        x:=x^PowerX; 
      END; 
       
      // insert in targeted matrix 
      IF InsMat>0 THEN 
        // insert in matrix of independent variables 
        IF InsCol>(MaxTerms+1) THEN 
          // display an error message 
          MSGBOX("Column "+InsCol+" is outside the range of 
columns"); 
          RETURN "ERROR"; 
        END; 
        MatX[i,InsCol]:=MatX[i,InsCol]*x; 
      ELSE 
        // insert in vector of dependent variable 
        VectY[i,1]:=VectY[i,1]*x; 
      END; 
    END;   
  END; 
 
  // calculate the regression coefficients 
  RegCoeff:=LSQ(MatX,VectY); 
   
  // calculate ymean 
  Sum1:=0; 
  FOR i FROM 1 TO NumRowsX DO 
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Statement 
    Sum1:=Sum1+VectY(i,1);   
  END; 
  YMean:=Sum1/NumRowsX; 
 
  // calculate the correlation coefficient 
  Sum1:=0; 
  Sum2:=0; 
  Yhat:=MatX*RegCoeff; 
  FOR i FROM 1 TO NumRowsX DO 
    Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 
    Sum2:=Sum2+(VectY(i,1)-YMean)^2; 
  END; 
  Rsqr:=Sum1/Sum2;   
  // return the results 
  RETURN {Rsqr,RegCoeff}; 
END; 

 

Table 5 – The source code for function MLRX. 
 
Let’s use function MLRX to fit data for with the regression model: 
 
ln(y) = a + b/(2x + 1) + c ln(3z + 5)  + d (5t – 2)2 
 
Table 6 shows the data that I will use to calculate the regression coefficients for the above equation.  Store 
the data of Table 6 in matrix M1. Table 7 shows the transformations matrix. The matrix rows give 
function MLRX the instructions to build the data in the variables MatX and VectY. Store the data of 
Table 7 in matrix M2. 
 

x z t y 
1 1 7 3000 
2 3 6 250 
3 2 3 500 
4 2 1 50 
5 3 2 200 
6 3 5 1500 
7 4 8 4500 
8 4 9 5500 
9 5 4 1000 

10 5 2 200 
 

Table 6 – Sample data for testing function MLRX. 
 

Select Variable Scale Value Shift Value Power Target Matrix Target Matrix Column 
4 1 0 0 0 0 
1 2 1 –1 1 2 
2 3 5 0 1 3 
3 5 –2 2 1 4 

 

Table 7 – Transformations matrix. 
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Calculate the coefficient of determination and regression coefficients by executing the following 
command: 
 
MLRX(M1,3,M2)L1 
 
Figure 3 shows the results of calling function MLRX. 
 

 
 

Fig.  3 – The results of executing functions InsertVar and MLR2. 
 
The coefficient of determination is 0.705686. The fitted model is: 
 
ln(y) = 5.064781119 – 0.482455938/(2x + 1) + 0.095869673 ln(3*z + 5)  + 0.002036764 (5t – 2)2 
 
The above model explains about 70.5 % of the variation in y.  
 

Further Exploring the Power of Function MLRX 
The last section showed you how to work with a custom multi-variable linearized regression. The 
example I gave you tested fitting the following empirical equation: 
 
ln(y) = a + b/(2x + 1) + c ln(3z + 5)  + d (5t – 2)2 
 
The above equation has several terms, each with a single variable. You may recall that the introduction 
for function MLRX hailed its ability to handle elaborate regression models. This section looks at this 
feature. Consider the following empirical equation: 
 
ln(y) = a + b (5x – 2)/(2x + 1) + c ln(3z + 5)/(x+1)  + d (x+1)(z+3)(5t – 2)2 
 
Notice the following terms of the above equation: 
 

• The term (5x – 2)/(2x + 1) has two factors that use the same variable, x. 
• The term (ln(3z + 5))/(x+1) has two factors that use two different variables, z and x. 
• The term (x+1)(z+3)(5t – 2)2 has three factors that use three different variables, x, z and t. 

 

To use function MLRX with the above empirical regression model we use the values in Table 8. The 
rows of that table map the terms of the empirical regression model from left to right. Store the values of  
 

Select Variable Scale Value Shift Value Power Target Matrix Target Matrix Column 
4 1 0 0 0 0 
1 5 –2 1 1 2 
1 2 1 –1 1 2 
2 3 5 0 1 3 
1 1 1 –1 1 3 
1 1 1 1 1 4 
2 1 3 1 1 4 
3 5 –2 2 1 4 

 

Table 8 – The second transformations matrix. 
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Table 8 in matrix M3. I will use the same data in Table 6, which should still reside in matrix M1. 
 
Calculate the coefficient of determination and regression coefficients by executing the following 
command: 
 
MLRX(M1,3,M3) 
 
Figure 4 shows the output of function MLRX. 
 

 
 

Fig.  4 – The results of executing function MLRX. 
 
The coefficient of determination is 0.7399. The fitted model is: 
 
ln(y) = 21.49 – 6.1423 (5x – 2)/(2x + 1) – 7.464 ln(3z + 5)/(x+1) + 3.3069E–5  (x+1)(z+3)(5t – 2)2 
 
The above model explains about 74 % of the variation in y.  
 
The versatility of function MLRX comes from the following IF statement in Table 5: 
 
IF InsMat>0 THEN 
  // insert in matrix of independent variables 
  IF InsCol>(MaxTerms+1) THEN 
    // display an error message 
    MSGBOX("Column "+InsCol+" is outside the range of columns"); 
    RETURN "ERROR"; 
  END; 
  MatX[i,InsCol]:=MatX[i,InsCol]*x; 
ELSE 
  // insert in vector of dependent variable 
  VectY[i,1]:=VectY[i,1]*x; 
END; 
 
The assignment statements that write values to matrices MatX and VectYempower you to build the 
product of multiple factors containing the same or different variable. You can even include values from 
the dependent variable, if your model requires it.  
 
Observations and Conclusions 
This article presented you with HP 39gII functions that performed linearized regression between two and 
between three variables. In addition, the article presented you with the special function MLRX that 
allows you to perform linearized regression between four or more variables. The function also supports 
regression models that contains terms with one or more transformed variables. All of these tools allow 
you to select variables and then temporarily scale, shift, and raise their values to powers (or take their 
natural logarithms) before performing regression calculations.  
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The next article presents HP 39gII functions that perform the best linearized regression between two, 
three, and four variables. The article also offers an HP 39gII function that selects the best polynomial that 
fits (x, y) data points. 
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HP 39gII Regression: Part III 
The Best Curve Fits in Town! 

Namir Shammas 
 
Introduction 
In the last two articles I presented various HP 39gII functions that performed regression calculations on 
different models. Using these functions assumed that you either knew the regression model suitable for 
your data or were willing to try a few different regression models to see which one best fit your data. This 
article looks at HP 39gII functions that systematically try a large number of regression models to see 
which ones are the best. In this article I discuss the following topics: 
 
1. The best regression models for two variables, fitting up to 81 regression models. 
 
2. The best regression models for three variables, fitting up to 729 regression models. 
 
3. The best regression models for four variables fitting up to 6561 regression models. 
 
4. The best polynomial for two variables. 
 

 In this series of articles, I use the term regression model to mean the equation that is used in the 
regression calculations to describe the relationship between a dependent variable and one or more 
independent variables. 

 
The Best Regression Model for Two Variables 
Given two variables, x and y, what is the best linearized regression model when each variable has a list of 
powers used to transform it? Here is a partial list of linearized regression models that can be tested: 
 
y = a + b x 
y = a + b/ln(x) 
ln(y) = a + b x 
ln(y) = a + b ln(x) 
y = a + b/x 
1/y = a + b x 
1/y = a + b/x 
ln(y) = a + b/x 
1/y = a + b ln(x) 
 
And so on! I can further extend the list by adding more regression models that use combinations of square 
root, squared, cubed, reciprocal square root, reciprocal square, and reciprocal cube transformations for 
each of x and y. The total number of regression models equals the number of product of the 
transformation applied to x and y. 
 
What is my end game here? Rather than selecting just the very best regression model (with the highest 
coefficient of determination), I want to apply a more informative approach. I want to find out the best N 
regression models. In this article I choose N to be 20. You can easily change that limit to 10, 15, 25, or 
any other number you want. In general it’s a good idea to look at the top N regression model and not be 
fixated with just the very best regression model. 
 
Table 1 shows you the source code for function BestLR. This function has the following parameters: 
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1. The parameter Data is the source data matrix that contains the variables x and y. The matrix must 
have at least two columns of data. 

 
2. The parameter lstSel is a list containing two elements. The first element is the index of parameter 

Data that selects the variable x. The second list element is the index of parameter Data that selects the 
variable y.  

 
3. The parameter lstX is a list that enumerates the set of powers used to transform the variable x. These 

powers can be integers and non-integers, and also positive, zero, and negative. The function treats the 
zero power as a special case and applies the natural logarithm. If you supply an empty list to this 
parameter, the function automatically uses the list {–3, –2, –1, –0.5,0,0.5,1,2,3}. This list allows the 
values of x to be transformed into reciprocal cube, reciprocal square, reciprocal, reciprocal square 
root, natural logarithm, square root, linear, square, and cube values. You can pass arguments for this 
parameter that are subsets of these values to choose fewer transformations. You can also pass 
arguments for this parameter that are supersets of these values to choose more transformations. You 
can also pick and choose any valid combination of powers. The key point in all these cases is to use 
valid powers that lead to error-free transformations. All of the transformation you choose must NOT 
GENERATE RUNTIME errors. Otherwise, the function will stop executing. 

 
4. The parameter lstY is a list that enumerates the set of powers used to transform the variable y. It 

works just like parameter lstX but on the data for variable y. 
 
The function uses the variable MaxRes to manage the number of best regression models to report back to 
you. The function assigns the value of 20 to this variable. You can change this value to alter the number 
of best regression models stored in the results matrix. 
 
The function returns a results matrix containing the best 20 results. These results are sorted by the 
coefficient of determination of each regression model. The results matrix contains the following columns: 
 
1. The values of the coefficient of determination. 
 
2. The powers used to transform variable y. 
 
3. The powers used to transform variable x. 
 
4. The intercept values. 
 
5. The slope values. 
 

Statement 
EXPORT BestLR(Data,lstSel,lstX,lstY) 
BEGIN 
  LOCAL Tx,Ty,i,j,k; 
  LOCAL SelXCol,SelYCol; 
  LOCAL PowerX,PowerY; 
  LOCAL MatX,VectY,RegCoeff,MatRes; 
  LOCAL lstDim,NumRows,ResUpdated; 
  LOCAL Sum1,Sum2,Rsqr,YMean,Yhat; 
  LOCAL MaxRes,NumColRes; 
 
  // use the default transformation list 
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Statement 
  // for variable x if lstX is empty 
  IF SIZE(lstX)==0 THEN 
    lstX:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 
  END; 
   
  // use the default transformation list 
  // for variable y if lstY is empty 
  IF SIZE(lstY)==0 THEN 
    lstY:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 
  END; 
  // set the maximum number of results 
  MaxRes:=20; 
  // set the number of columns in  
  // the results matrix 
  NumColRes:=5; 
  // get the indices for variable x and y 
  SelXCol:=lstSel(1); 
  SelYCol:=lstSel(2); 
  // get the number of rows of data 
  lstDim:=SIZE(Data); 
  NumRows:=lstDim(1); 
  // create the result and regression matrices 
  MatX:=MAKEMAT(1,NumRows,2); 
  VectY:=MAKEMAT(1,NumRows,1); 
  MatRes:=MAKEMAT(0,MaxRes,NumColRes); 
   
  // iterate for each transformation in x 
  FOR Tx FROM 1 TO SIZE(lstX) DO 
    // get the current power of x 
    PowerX:=lstX(Tx); 
 
    // transform x 
    IF PowerX==0 THEN 
      FOR i FROM 1 TO NumRows DO 
        MatX(i,2):=LN(Data(i,SelXCol)); 
      END; 
    ELSE 
      FOR i FROM 1 TO NumRows DO 
        MatX(i,2):=Data(i,SelXCol)^PowerX; 
      END;   
    END;       
 
    // iterate for each transformation in y 
    FOR Ty FROM 1 TO SIZE(lstY) DO 
      // get the current power of y 
      PowerY:=lstY(Ty); 
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Statement 
      // transform y 
      IF PowerY==0 THEN 
        FOR i FROM 1 TO NumRows DO 
          VectY(i,1):=LN(Data(i,SelYCol)); 
        END; 
      ELSE 
        FOR i FROM 1 TO NumRows DO 
          VectY(i,1):=Data(i,SelYCol)^PowerY; 
        END;   
      END;       
       
      // calculate regression coefficients 
      RegCoeff:=LSQ(MatX,VectY); 
       
      // calculate ymean 
      Sum1:= 0; 
      FOR i FROM 1 TO NumRows DO 
        Sum1:=Sum1+VectY(i,1); 
      END; 
      YMean:=Sum1/NumRows; 
     
      // calculate coefficient of determination 
      Sum1:=0; 
      Sum2:=0; 
      Yhat:=MatX*RegCoeff; 
      FOR i FROM 1 TO NumRows DO 
        Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 
        Sum2:=Sum2+(VectY(i,1)-YMean)^2;       
      END; 
      Rsqr:=Sum1/Sum2;   
       
      // Rsqr is better than last entry 
      // in the results matrix? 
      IF Rsqr>MatRes(MaxRes,1) THEN 
        ResUpdated:=0; 
        // loop for each row in the 
        // results matrix 
        FOR i FROM 1 TO MaxRes DO 
          // compare with other Rsqr values 
          IF ResUpdated==0 AND Rsqr>MatRes(i,1) THEN 
            // found better Rsqr for row i 
            // push rows below? 
            IF i<MaxRes THEN 
              j:=MaxRes-1; 
              REPEAT 
              // FOR j FROM MaxRes-1 TO n STEP -1 DO 
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Statement 
                FOR k FROM 1 TO NumColRes DO 
                  MatRes(j+1,k):=MatRes(j,k); 
                END; 
                j:=j-1; 
              //END; 
              UNTIL j<i; 
            END; 
            // store new best results 
            MatRes(i,1):=Rsqr; 
            MatRes(i,2):=PowerY; 
            MatRes(i,3):=PowerX; 
            MatRes(i,4):=RegCoeff(1,1); 
            MatRes(i,5):=RegCoeff(2,1); 
            ResUpdated:=1; 
          END; 
        END;       
      END; 
     END; // FOR Ty 
  END; // FOR Tx 
   
  RETURN MatRes; 
   
END; 

 

Table 1 – The source code for function BestLR. 
 

The source code for function BestLR uses two nested FOR loops to go through each transformation for 
the variables x and y. Inside the nested loops, the function calculates the regression coefficients and the 
coefficient of determination. The next phase compares the newly calculated coefficient of determination 
with similar values stored in the first column of the results matrix. If the newly calculated coefficient of 
determination is better than any value in the first column of the results matrix, the function inserts the data 
from the newly calculated regression into the results matrix. The function determines which row will store 
the new data. Then, the insertion process copies old data from the insertion row downward in the results 
matrix. The last row in the results matrix has its data overwritten by the ones in the row above it, or 
possibly by the newly calculated regression data. 
 
Let’s test the function BestLR using the data in Table 2. The values in the table come from the equation: 
 
y = 3 + 2 x2 
 

x y 
1 5 
2 11 
3 21 
4 35 
5 53 
6 75 
7 101 
8 131 
9 165 

10 203 
 

Table 2 – Sample data used to test the function BestLR. 
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Enter the values of Table 2 in the global matrix M1 and then execute the following command: 
 
BestLR(M1,{1,2},{},{})M2 
 
The above call for function BestLR uses the default transformations for both variables x and y. Since the 
function uses 9 transformations (including the linear one) on each variable, the total number of regression 
models tested is 81. Figure 1 shows the contents of matrix M2 which stores the results of the best model 
selection. Table 3 shows the best five regression models. The best model in that table is indeed the one 
used to create the data in Table 2. Keep in mind that if the values of y included an error component, the 
function BestLR may not specify the equation y = 3 + 2 x2 as the best model. That model may be 
superseded by other models depending on the error components associated with the values of variable y.  
 
 

 
 

Fig.  1 – The values in matrix M2. 
 
 

Rsqr Power y Power x Regression 
Model 

Intercept Slope 

1.000000 1 2 y = a+b x2 3 2 
 0.999189 0.5 1 √y = a+b x 0.6279425 1.3509222 

0.998873 -3 -3 1/y3 = a + b/x3 -7.441533E-5 8.0478988E-3 
0.997834 -0.5 0.5 1/√y = a+b/√x -0.1115322 0.56543287 
0.997208 -2 -2 1/y2 = a + b/x2 -1.1075566E-3 0.0407642 

 

Table 3 – The Best five regression models found by function BestLR. 

The Best Regression Model for Three Variables 
The last section gave you have a taste of finding the best regression model between one dependent 
variable and one independent variable. This section presents a function that finds the best regression 
model between the dependent variable, y, and the independent variables x and z.  
 
Table 4 shows you the source code for function BestMLR2. This function has the following parameters: 
 
1. The parameter Data is the source data matrix that contains the variables x, z, and y. The matrix must 

have at least two columns of data. 
 
2. The parameter lstSel is a list containing three elements. The first element is the index of parameter 

Data that selects the independent variable x. The second list element is the index of parameter Data 
that selects the independent variable z. The third list element is the index of parameter Data that 
selects the dependent variable y.  

 
3. The parameter lstX is a list that enumerates the set of powers used to transform the variable x. These 

powers can be integers and non-integers, and also positive, zero, and negative. The function treats the  
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zero power as a special case and applies the natural logarithm. If you supply an empty list to this 
parameter, the function automatically uses the list {–3, –2, –1, –0.5,0,0.5,1,2,3}. This list allows the 
values of x to be transformed into reciprocal cube, reciprocal square, reciprocal, reciprocal square 
root, natural logarithm, square root, linear, square, and cube values. You can pass arguments for this 
parameter that are subsets of these values to choose fewer transformations. You can also pass 
arguments for this parameter that are supersets of these values to choose more transformations. All of 
the transformation you choose must NOT GENERATE RUNTIME errors. 

 
4. The parameter lstZ is a list that enumerates the set of powers used to transform the variable z. It works 

just like parameter lstX but on the data for variable z. 
 
5. The parameter lstY is a list that enumerates the set of powers used to transform the variable y. It 

works just like parameter lstX but on the data for variable y. 
 
The function uses the variable MaxRes to manage the number of best regression models to store and 
report back to you. The function assigns the value of 20 to this variable. You can change this value to alter 
the number of best regression models stored in the results matrix. 
 
The function returns a results matrix containing the best 20 results. These results are sorted by the 
coefficient of determination of each regression model. The results matrix contains the following columns: 
 
1. The values for the coefficient of determination. 
 
2. The powers used to transform variable y. 
 
3. The powers used to transform variable x. 
 
4. The powers used to transform variable z. 
 
5. The intercept values. 
 
6. The values for the regression coefficient of variable x. 
 
7. The values for the regression coefficient of variable z. 
 

Statement 
EXPORT BestMLR2(Data,lstSel,lstX,lstZ,lstY) 
BEGIN 
  LOCAL Tx,Tz,Ty,i,j,k; 
  LOCAL SelXCol,SelZCol,SelYCol; 
  LOCAL PowerX,PowerZ,PowerY;   
  LOCAL MatX,VectY,RegCoeff,MatRes; 
  LOCAL lstDim,NumRows,ResUpdated; 
  LOCAL Sum1,Sum2,Rsqr,YMean,Yhat; 
  LOCAL MaxRes,NumColRes; 
 
  // use default transformation list 
  // if lstX is an empty list 
  IF SIZE(lstX)==0 THEN 
    lstX:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 
  END; 

 
 
HP Solve # 30 Page 57                                   Page 7 of 21 



Statement 
  // use default transformation list 
  // if lstZ is an empty list 
  IF SIZE(lstZ)==0 THEN 
    lstZ:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 
  END; 
 
  // use default transformation list 
  // if lstY is an empty list 
  IF SIZE(lstY)==0 THEN 
    lstY:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 
  END; 
  // Set the number of rows and columns in the results matrix 
  MaxRes:=20; 
  NumColRes:=7; 
  // get the variable selectors 
  SelXCol:=lstSel(1); 
  SelZCol:=lstSel(2); 
  SelYCol:=lstSel(3); 
  // get the number of rows in matrix Data 
  lstDim:=SIZE(Data); 
  NumRows:=lstDim(1); 
  // create the regression and results matrices 
  MatX:=MAKEMAT(1,NumRows,3); 
  VectY:=MAKEMAT(1,NumRows,1); 
  MatRes:=MAKEMAT(0,MaxRes,NumColRes); 
   
  // start the calculations 
 
  // process transformations for variable x 
  FOR Tx FROM 1 TO SIZE(lstX) DO 
   PowerX:=lstX(Tx); 
   
   // transform x 
   IF PowerX==0 THEN 
     FOR i FROM 1 TO NumRows DO 
       MatX(i,2):=LN(Data(i,SelXCol)); 
     END; 
    ELSE 
      FOR i FROM 1 TO NumRows DO 
        MatX(i,2):=Data(i,SelXCol)^PowerX; 
      END;   
    END;       
 
    // process transformations for variable z 
    FOR Tz FROM 1 TO SIZE(lstZ) DO 
      PowerZ:=lstZ(Tz); 
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Statement 
      // transform z 
      IF PowerZ==0 THEN 
        FOR i FROM 1 TO NumRows DO 
          MatX(i,3):=LN(Data(i,SelZCol)); 
        END; 
      ELSE 
        FOR i FROM 1 TO NumRows DO 
          MatX(i,3):=Data(i,SelZCol)^PowerZ; 
        END;   
      END;       
 
      // process transformations for variable y 
      FOR Ty FROM 1 TO SIZE(lstY) DO   
        PowerY:=lstY(Ty); 
       
        // transform y 
        IF PowerY==0 THEN 
          FOR i FROM 1 TO NumRows DO 
            VectY(i,1):=LN(Data(i,SelYCol)); 
          END; 
        ELSE 
          FOR i FROM 1 TO NumRows DO 
            VectY(i,1):=Data(i,SelYCol)^PowerY; 
          END;   
        END;      
  
        // calculate regression coefficients 
        RegCoeff:=LSQ(MatX,VectY); 
       
        // calculate ymean 
        Sum1:=0; 
        FOR i FROM 1 TO NumRows DO 
          Sum1:=Sum1+VectY(i,1); 
        END; 
        Ymean:=Sum1/NumRows; 
     
        // calculate the coefficient of determination 
        Sum1:=0; 
        Sum2:=0; 
        Yhat:=MatX*RegCoeff; 
        FOR i FROM 1 TO NumRows DO 
          Sum1:=Sum1+(Yhat(i,1)-Ymean)^2; 
          Sum2:=Sum2+(VectY(i,1)-Ymean)^2;       
        END; 
        Rsqr:=Sum1/Sum2;   
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Statement 
        // Rsqr is better than last entry 
        // in the results matrix? 
        IF Rsqr>MatRes(MaxRes,1) THEN 
          ResUpdated:=0; 
          // check which row to insert better  
          // regression results 
          FOR i FROM 1 TO MaxRes DO 
            // insert new results in row i? 
            IF ResUpdated==0 AND Rsqr>MatRes(i,1) THEN 
              // inserting inside the results matrix? 
              IF i<MaxRes THEN 
                // downward copy rows from MaxRes-1 to i 
                j:=MaxRes-1; 
                REPEAT 
                  FOR k FROM 1 TO NumColRes DO 
                    MatRes(j+1,k):=MatRes(j,k); 
                  END; 
                  j:=j-1; 
                UNTIL j<i; 
              END; 
              // insert better results in row i 
              MatRes(i,1):=Rsqr; 
              MatRes(i,2):=PowerY; 
              MatRes(i,3):=PowerX; 
              MatRes(i,4):=PowerZ; 
              FOR k FROM 1 TO 3 DO 
                MatRes(i,4+k):=RegCoeff(k,1); 
              END; 
              ResUpdated:=1; 
            END; 
          END; 
        END; 
      END; // FOR Ty 
     END; // FOR Tz 
    END; // FOR Tx 
   
  RETURN MatRes;  

   
END; 

Table 4 – The source code for function BestMLR2. 
 
The source code for function BestMLR2 uses three nested FOR loops to go through each transformation 
for the variables x, z, and y. Inside the nested loops, the function calculates the regression coefficients and 
the coefficient of determination. The next phase compares the newly calculated coefficient of 
determination with similar values stored in the first column of the results matrix. If the newly calculated 
coefficient of determination is better than any value in the first column of the results matrix, the function 
inserts the data from the newly calculated regression into the results matrix. The function determines  
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which row will store the new data. Then, the insertion process copies old data from the insertion row 
downward in the results matrix. The last row in the results matrix has its data overwritten by the ones in 
the row above it, or possibly by the newly calculated regression data. 
 
Let’s test the function BestMLR2 using the data in Table 5. The values in the table come from to the 
equation: 
 
y = 3 + 2 x2 + 20/z 
 

x z y 
1 1 25 
2 1 31 
3 2 31 
4 2 45 
5 4 58 
6 5 79 
7 2 111 
8 4 136 
9 5 169 

10 5 207 
 

Table 5 – Sample data used to test the function BestMLR2. 
 
Enter the values of Table 5 in the global matrix M1 and then execute the following command: 
 
BestMLR2(M1,{1,2,3},{},{},{})M2 
 
The above call for function BestMLR2 uses the default transformations for variables x, z, and y. Since 
the function uses 9 transformations (including the linear one) on each variable, the total number of 
regression models tested is 729. Figure 2 shows the contents of matrix M2 which stores the results of the 
best model selection. Table 6 shows the best five regression models. The best model is the same one used 
to create the data in Table 5. 
 

 
 

Fig.  2 – The values in matrix M2. 
 
 

Rsqr Power y Power z Power z Intercept Slope X Slope Z 
1.000000 1 2 -1 3 2 20 

 0.999893 1 2 -0.5 -7.371050 2.00917 29.73563 
0.999772 1 2 -2 8.661370 1.976927 14.78107 
0.999542 1 2 0 21.432295 2.011851 -10.008505 
0.999459 1 2 -3 10.607556 1.960595 12.795117 

 

Table 6 – The Best five regression models found by function BestMLR2. 
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The appendix contains the listing for function BestML3 which obtains the best regression models for the 
independent variables x, z, and t, and the dependent variable y. This function performs tasks that are 
similar to functions BestLR and BetMLR2. 
 
The Best Polynomial Fit 
If you want to fit pairs of (x, y) data points with a polynomial, one of the first and common questions you 
may ask regards the best order of the polynomial. This section deals with how to obtain the best 
polynomial order in fitting (x, y) data points. The first issue in dealing with fitting polynomials that have 
different orders is how to compare the goodness of fit for regression models that have a different number 
of terms. Up till now, the functions I presented used the coefficient of determination to compare models 
that have the same number of terms. To compare models that have different number of terms we need to 
calculate the adjusted coefficient of determination[2]. The following equation calculates this statistic based 
on the coefficient of determination: 
 
R2

adj = 1 – (1 – R2) (n – 1) / (n – k – 1) 
 
Where n is the number of data points and k is the number of independent variables that are in the 
regression model. 
 
Using the adjusted coefficient of determination seems like a good idea at first. The reality is that high-
order polynomials also generate high value for their adjusted coefficient of determination. Often, you get 
to a certain polynomial order where the gain in the adjusted coefficient of determination is small. You ask 
yourself if that small gain is justified! 
 
What would be nice is find a different statistic that balances the following aspects of goodness of fit: 
 

• Reward the regression models that generate smaller values for the sum of squared errors. 
• Penalize the regression models for using more independent variables or terms. 

 
The Akaike information criterion[1] (AIC) is one of the new goodness-of-fit statistics that follow the above 
two rules. The corrected AIC statistic, AICC, is a refined version that I use in this article. To calculate the 
AICC I use the following equation: 
 

AICC = 𝑛 𝑙𝑛 �∑ �𝑦�𝑖 −  𝑦𝑖�
2/𝑛𝑛

1 �+ 2𝑘+ (2 𝑘 (𝑘+ 1))/(𝑛− 𝑘− 1)  
 
Where n is the number of observations, y�i is the projected value of y, yi is the observed value of y (or its 
transformed value), and k is the polynomial order plus 1 (that is, the total number of regression 
coefficients, including the constant term). What kind of values for the AICC statistics are we looking for? 
The smallest value of AICC picks the best the regression model. The AICC statistic works better than the 
adjusted coefficient of determination with polynomials. The AICC is able to penalize higher order 
polynomials if they fail to significantly reduce the sum of the errors squared. The AICC does not justify a 
very small increase in the coefficient of determination in a higher order polynomial fit. 
 
Table 7 presents the source code for the BestPolyReg function. This function has the following 
parameters: 
 

• The parameter Data is the source data matrix that contains the values for variables x and y. 
• The parameter SelXCol selects the column in matrix Data that contains the values for variable x.  
• The parameter SelYCol selects the column in matrix Data that contains the values for variable y. 
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• The parameters MinOrder and MaxOrder define the range of polynomial orders to test. 
 
The function returns the following list of results for the best polynomial fit: 
 

• The polynomial order. 
• The coefficient of determination. 
• The adjusted coefficient of determination. 
• The value for the AICC statistic. 
• The vector column containing the regression coefficients. 

 
During the calculation phase, the function also displays the values for the polynomial order, sum of 
squared errors, and AICC statistic for all the polynomial order. This output should give you an idea of how 
the different polynomial order compare with each other. When you press the [Home] button, the 
calculator switches to the Home display and shows you the list of final results. 
 

Statment 
EXPORT BestPolyReg(Data,SelXCol,SelYCol,MinOrder,MaxOrder) 
BEGIN 
  LOCAL i,k,x,y,Order; 
  LOCAL MatX,VectY; 
  LOCAL lstDim,NumRows; 
  LOCAL Sum1,Sum2,Sum3,AICc,BestAICc; 
  LOCAL Rsqr,RsqrAdj,YMean,Yhat,RegCoeff; 
  LOCAL BestOrder,BestRsqr,BestRsqrAdj,BestRegCoeff; 
 
  lstDim:=SIZE(Data); 
  NumRows:=lstDim(1); 
   
  IF MinOrder<1 THEN 
    MinOrder:=1; 
  END; 
   
  // initialize best regression data 
  BestOrder=0; 
  BestRsqr:=0; 
  BestRsqrAdj=0; 
  BestAICc:=1E499; 
  // initialize vector y 
  VectY:=MAKEMAT(1,NumRows,1); 
   
  // calculate ymean … needs to be done once! 
  Sum1:=0; 
  FOR i FROM 1 TO NumRows DO 
    y:=Data(i,SelYCol); 
    VectY(i,1):=y; 
    Sum1:=Sum1+y; 
  END; 
  YMean:=Sum1/NumRows; 
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Statment 
  // calculate sum of y – ymean squared 
  Sum2:=0; 
  FOR i FROM 1 TO NumRows DO 
    y:=Data(i,SelYCol); 
    Sum2:=Sum2+(y-YMean)^2; 
  END; 
   
  // iterate for the specified range of polynomial orders 
  FOR Order FROM MinOrder TO MaxOrder DO 
    // (re)create the matrix MatX 
    MatX:=MAKEMAT(1,NumRows,1+Order); 
    // fill the columns to to Order+1 with x^power values 
    FOR i FROM 1 TO NumRows DO 
      x:=Data(i,SelXCol); 
      FOR k FROM 1 TO Order DO 
        MatX(i,k+1):=x^k; 
      END; 
    END;   
 
    // calculate regression coefficients 
    RegCoeff:=LSQ(MatX,VectY); 
    
    // calculate the coefficient of determination 
    Sum1:=0; 
    Sum3:=0; 
    Yhat:=MatX*RegCoeff; 
    FOR i FROM 1 TO NumRows DO 
      Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 
      Sum3:=Sum3+(VectY(i,1)-Yhat(i,1))^2; 
    END; 
    Rsqr:=Sum1/Sum2;   
 
    // calculate the adjusted coefficient of determination 
    RsqrAdj:=1-(1-Rsqr)*(NumRows-1)/(NumRows-Order-1); 
 
    k:=Order+1; 
    // if Sum3 is 0 then adjust it to a small value 
    // to avoid getting a LN(0) error 
    IF Sum3==0 THEN 
      Sum3:=1E-499; 
    END; 
    // calculate AICc statistic 
    AICc:=NumRows*LN(Sum3/NumRows)+2*k+(2*k*(k+1))/(NumRows-k-1); 
    // display intermediate results 
    PRINT("Order="+Order+", AICc="+AICc+", Sum3="+Sum3); 
    // found a better fit? 
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Statment 
    IF AICc<BestAICc THEN 
      // update best regression data 
      BestOrder:=Order; 
      BestRsqr:=Rsqr; 
      BestRsqrAdj:=RsqrAdj; 
      BestAICc:=AICc; 
      BestRegCoeff:=RegCoeff; 
    END; 
  END; 
   
  RETURN {BestOrder,BestRsqr,BestRsqrAdj,BestAICc,BestRegCoeff}; 
END; 

 

Table 7 – The source code for function BestPolyReg 
 
Let’s test the function BestPolyReg. Table 8 shows sample (x,y) data. Enter the data in the global matrix 
M2. 

x y 
1 1 
2 5 
3 10 
4 15 
5 25 
6 35 
7 50 
8 65 
9 80 
10 100 

 

Table 8 – The sample data used to test function BestPolyReg. 
 
Invoke the function BestPolyReg by using the following command: 
 
BestPolyReg(M2,1,2,1,5) 
 
The above command specifies matrix M2 as the data source matrix. The second and third arguments 
specify that variable x and y are in columns 1 and 2, respectively, of matrix M2. The last two arguments 
in the call to function BestPolyReg specify that the polynomial orders examined are in the range of 1 to 5. 
 
Figures 3 and 4 show the intermediate output of the function using the PRINT statement. Figure 3 shows 
the upper portion of the PRINT statement output. Figure 4 shows the lower portion of the PRINT 
statement output. Notice that the polynomial order of 2 has the smallest AICC statistic. At the same time,  
 

 
 

Fig.  3 – The upper portion of the PRINT statements output. 
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Fig.  4 – The lower portion of the PRINT statements output. 
 
Figures 5 and 6 show the left and right sides of the list of output values. The output indicates that the 
quadratic polynomial is the best fit for the data in Table 8. The values for the coefficient of determination 
and adjusted coefficient of determination are 0.999364666385 and 0.999183142495, respectively. The 
AICC statistic for the best polynomial fit is 5.88. The best regression polynomial is: 
 
y = 0.56666666 – 0.137878789 x + 1.007575758 x2 

 
Note that values of y in Table 5 are based on the quadratic polynomial y = x2 with added errors. The 
function BestPolyReg has succeeded in identifying the quadratic polynomial as the one providing the best 
regression model. 
 
 

 
 

Fig.  5 – The left side of the output. 
 

 
 

Fig.  6 – The right side of the output. 
 
Observations and Conclusions 
This article presented HP 39gII functions that perform bets linearized regression between two, three, and 
four variables. These functions go through a long list of linearized regression models and find the nest 
models, sorting the results using the values of the coefficient of determination. The article also offered a 
function that finds the best polynomial that fits (x, y) data points. The article demonstrated that the 
modified Akaike information criterion is very suitable to select the best polynomial.  
 
The next article discusses least-squares relative error regression. The article will introduce you to the math 
behind relative error regression. Moreover, it will present several HP 39gII functions that apply 
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calculations for this type of regression to general linear, polynomial, and linearized models. 
 
Appendix 
Here is the listing for function BestML3: 
 

Statement 
EXPORT BestMLR3(Data,lstSel,lstX,lstZ,lstT,lstY) 
BEGIN 
  LOCAL Tx,Tz,Ty,Tt,i,j,k; 
  LOCAL SelXCol,SelZCol,SelTCol,SelYCol; 
  LOCAL PowerX,PowerZ,PowerT,PowerY;  
  LOCAL MatX,VectY,RegCoeff,MatRes; 
  LOCAL lstDim,NumRows,ResUpdated; 
  LOCAL Sum1,Sum2,Rsqr,YMean,Yhat; 
  LOCAL MaxRes,NumColRes; 
 
  // use default transformation list 
  // if lstX is an empty list 
  IF SIZE(lstX)==0 THEN 
    lstX:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 
  END; 
   
  // use default transformation list 
  // if lstZ is an empty list 
  IF SIZE(lstZ)==0 THEN 
    lstZ:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 
  END; 
 
  // use default transformation list 
  // if lstT is an empty list 
  IF SIZE(lstT)==0 THEN 
    lstT:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 
  END; 
 
  // use default transformation list 
  // if lstY is an empty list 
  IF SIZE(lstY)==0 THEN 
    lstY:={-3,-2,-1,-0.5,0,0.5,1,2,3}; 
  END; 
   
  MaxRes:=20; 
  NumColRes:=9; 
  // get the variable selectors 
  SelXCol:=lstSel(1); 
  SelZCol:=lstSel(2); 
  SelTCol:=lstSel(3); 
  SelYCol:=lstSel(4); 
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Statement 
  // get the number of rows in matrix Data 
  lstDim:=SIZE(Data); 
  NumRows:=lstDim(1); 
  // create the regression and results matrices 
  MatX:=MAKEMAT(1,NumRows,3); 
  VectY:=MAKEMAT(1,NumRows,1); 
  MatRes:=MAKEMAT(0,MaxRes,NumColRes); 
   
  // start the calculations 
 
  // process transformations for variable x 
  FOR Tx FROM 1 TO SIZE(lstX) DO 
   PowerX:=lstX(Tx); 
    
   // transform x 
   IF PowerX==0 THEN 
     FOR i FROM 1 TO NumRows DO 
       MatX(i,2):=LN(Data(i,SelXCol)); 
     END; 
   ELSE 
     FOR i FROM 1 TO NumRows DO 
       MatX(i,2):=Data(i,SelXCol)^PowerX; 
     END;   
   END;       
 
   // process transformations for variable z 
   FOR Tz FROM 1 TO SIZE(lstZ) DO 
    PowerZ:=lstZ(Tz); 
     
    // transform z 
    IF PowerZ==0 THEN 
      FOR i FROM 1 TO NumRows DO 
        MatX(i,3):=LN(Data(i,SelZCol)); 
      END; 
    ELSE 
      FOR i FROM 1 TO NumRows DO 
        MatX(i,3):=Data(i,SelZCol)^PowerZ; 
      END;   
    END;       
 
    // process transformations for variable t 
    FOR Tt FROM 1 TO SIZE(lstT) DO   
     PowerT:=lstT(Tt); 
      
     // transform t 
     IF PowerT==0 THEN 
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Statement 
       FOR i FROM 1 TO NumRows DO 
         MatX(i,4):=LN(Data(i,SelTCol)); 
       END; 
     ELSE 
       FOR i FROM 1 TO NumRows DO 
         MatX(i,4):=Data(i,SelTCol)^PowerT; 
       END;   
     END;       
 
     // process transformations for variable y 
     FOR Ty FROM 1 TO SIZE(lstY) DO   
      PowerY:=lstY(Ty); 
 
      // transform y 
      IF PowerY==0 THEN 
        FOR i FROM 1 TO NumRows DO 
          VectY(i,1):=LN(Data(i,SelYCol)); 
        END; 
      ELSE 
        FOR i FROM 1 TO NumRows DO 
          VectY(i,1):=Data(i,SelYCol)^PowerY; 
        END;   
      END;       
       
      // calculate regression coefficients 
      RegCoeff:=LSQ(MatX,VectY); 
       
      // calculate ymean 
      Sum1:=0; 
      FOR i FROM 1 TO NumRows DO 
        Sum1:=Sum1+VectY(i,1); 
      END; 
      YMean:=Sum1/NumRows; 
     
      // calculate the coefficient of determination 
      Sum1:=0; 
      Sum2:=0; 
      Yhat:=MatX*RegCoeff; 
      FOR i FROM 1 TO NumRows DO 
        Sum1:=Sum1+(Yhat(i,1)-YMean)^2; 
        Sum2:=Sum2+(VectY(i,1)-YMean)^2;       
      END; 
      Rsqr:=Sum1/Sum2;   
       
      // Rsqr is better than last entry 
      // in the results matrix? 
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Statement 
      IF Rsqr>MatRes(MaxRes,1) THEN 
        ResUpdated:=0; 
        // check which row to insert better  
        // regression results 
        FOR i FROM 1 TO MaxRes DO 
          // insert new results in row i? 
          IF ResUpdated==0 AND Rsqr>MatRes(i,1) THEN 
            // inserting inside the results matrix? 
            IF i<MaxRes THEN 
              // downward copy rows from MaxRes-1 to i 
              j:=MaxRes-1; 
              REPEAT 
                FOR k FROM 1 TO NumColRes DO 
                  MatRes(j+1,k):=MatRes(j,k); 
                END; 
                j:=j-1; 
              UNTIL j<i; 
            END;  
            // insert better results in row i 
            MatRes(i,1):=Rsqr; 
            MatRes(i,2):=PowerY; 
            MatRes(i,3):=PowerX; 
            MatRes(i,4):=PowerZ; 
            MatRes(i,5):=PowerT; 
            FOR k FROM 1 TO 4 DO 
              MatRes(i,5+k):=RegCoeff(k,1); 
            END; 
            ResUpdated:=1; 
          END; 
        END; 
      END;  
     END; // FOR Ty    
    END; // FOR Tt 
   END; // FOR Tz 
  END; // FOR Tx 
   
  RETURN MatRes; 
END; 
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HP 39gII Regression: Part IV 
Least-Squares Relative Error Regression 

Namir Shammas 
 

Introduction 
Ordinary least-squares (OLS) errors regression minimizes the sum of squared errors for the regression 
models. These regression models include all kinds of linear and nonlinear equations that describe the 
relationship between a dependent variable and one or more independent variables. Conceptually, OLS 
regression treats all errors, in the dependent variable, as having an equal weight, concern, and importance. 
There are cases where you need to reduce the relative (or percentage) errors. Consider the example where 
you are measuring distance versus time to calculate the speed as the slope of the first two variables. You 
have distance readings between 10 ft, and 100 ft in increments of 5 feet. Repeated measurements tell you 
that you get an error of ±0.5 ft for each reading. Of course, an error of ±0.5 ft for a 10 ft reading is more 
serious than that for the higher readings. You like to perform a curve fit that minimizes the least-squares 
relative errors so that your regression model gives better predictions for smaller distance values. This is 
where least-squares relative error (LSRE) regression is relevant. The history of statistical calculations has 
favored OLS regression far more than LSRE regression, since the OLS equations are simpler to derive. 
This favoritism is somewhat unfortunate, since it does not give researchers a fair choice between OLS and 
LSRE regression analysis tools. This article looks at LSRE regression using the HP 39gII calculator. 
 
In this article I present three HP 39gII functions that are the RLSE versions of OLS regression functions 
that I presented in part I of this series. The two flavors of regression functions have the same parameter 
lists and returned results. These similarities make the RLSE functions easy to use once you have become 
familiar with their OLS counterpart. 
 

 In this series of articles, I use the term regression model to mean the equation that is used in the 
regression calculations to describe the relationship between a dependent variable and one or more 
independent variables. 

LSRE Regression 101 
Consider the simplest linear regression model: 
 
y = A + B x 
 
Where A and B are the intercept and slope, respectively. Variables x and y are the independent and the 
dependent variables, respectively. The following equation calculates the error for the linear regression: 
 
OEi = yi – A – B xi 
 
In the case of least-squares relative errors, the relative error is: 
 
REi = OEi / yi = (yi – A – B xi) / yi = (1– A/yi – B xi/yi)  
 

 The RLSE regression cannot have zeros as values for the dependent variable or its 
transformation. Such values generate runtime divide-by zero errors when calculating the least-
squares relative errors. 
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OLS regression minimizes the sum of squared errors as expressed in the following equation: 
 
LOLS = ∑(yi – A – B xi)2 
 
Whereas LSRE regression minimizes the sum of squared relative errors as expressed in the following 
equation: 
 
LLSRE = ∑(1 – A/yi – B xi/yi)2 
 
To obtain the values of A and B for OLS regression, you perform the following steps: 
 
1. Expand the summation of LOLS.  
2. Derive LOLS with respect to A and with respect to B to obtain two linear equations. 
3. Solve the two linear equations to evaluate A and B using various statistical summations of x and y. 
  
The above steps yield the following commonly known equations for the slope and intercept: 
 
B = [n  ∑xiyi – ∑xi  ∑yi] / [ n  ∑xi^2 – (∑xi)^2] 
 
A = (∑yi – B  ∑xi) / n 
 
Where n is the number of observations. In the case of LSRE regression we follow a similar procedure to 
calculate A and B from the equation for LLSRE. The equations that calculate B and A are: 
 
B = b1 / b2 
 
b1 = ∑(xi/yi)  ∑(1/yi^2) – ∑(xi/yi^2)  ∑(1/yi) 
 
b2 = ∑((xi/yi)^2)  ∑(1/yi^2) – [∑(xi/yi^2)] ^2 
 
A = [∑(1/yi) – B  ∑(xi/yi^2)]  / ∑(1/yi^2) 
 
The above equations are quite different from their OLS counterpart. Also notice that calculating the RLSE 
slope and intercept does not involve the number of observations. 
 
In matrix form, you can calculate the OLS regression coefficients vector, b, for a linearized regression 
model using the following equation: 
 
b = (XT X)-1 (XT y) 
 
Where matrix X has multiple columns that represent values for the independent variables and/or their 
transformations. These transformations include the natural logarithm, reciprocal, and square, just to name 
a few. The first column in matrix X is typically filled with the constant 1 to calculate a constant for the 
fitted regression model. The column vector y contains the values of the dependent variable or its 
transformations.   
 
In the case of LSRE regression the matrix form for solving vector b is: 
 
b = (XT D2 X)-1 (XT D2 y)  
 
Where D is a square matrix with zeros except for diagonal elements having 1/yi values.  
 
To calculate the goodness of fit for the LSRE regression, you obtain the value for the coefficient of 
determination using the following equation: 
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𝑅𝐿𝑆𝑅𝐸2  = ∑ ((𝑦�𝑖− 𝑦�)/𝑦𝑖)2𝑛
1

∑ ((𝑦𝑖− 𝑦�)/𝑦𝑖)2𝑛
1

 
 
Where 𝑦�𝑖 is the predicted value of y at the values of the independent variables used in the calculations, 𝑦� 
is the average value of y, and 𝑦𝑖 is the values of y entering in the regression calculations. Compare the 
above equation with its OLS regression counterpart: 
 

𝑅𝑂𝐿𝑆𝐸2  = ∑ (𝑦�𝑖− 𝑦�)2𝑛
1

∑ (𝑦𝑖− 𝑦�)2𝑛
1

 

A Calculation Trick 
You may have noticed that I jumped from the basic equations for calculating a simple LSRE linear 
regression model to presenting the matrix form that describes the LSRE calculations for a wide variety of 
regression models. I could have gradually presented more advanced LSRE regression equations. For 
example, I could have listed the equations for an LSRE quadratic polynomial regression and also for the 
simplest LSRE multiple regression that involves two independent variables. This process would have 
added several pages filled with equations. Instead I chose to present a calculation trick where we can use 
the OLS regression calculations to calculate the coefficients for LSRE regression models. The trick relies 
on looking at the expression for LLSRE and viewing it in a different light--as if it were LOLS: 
 
LOLS = ∑(1 – A/yi – B xi/yi)2 
 
The above equation indicates that we are fitting the following OLS regression model: 
 
1 = A/y + B x/y 
 
Or, 
 
α = A/y + B x/y 
 
The above (very strange) equation is an OLS multiple regression model with the following features: 
 

• The values for the (new) dependent variable (call it α) are always 1. 
• The model is a linearized multiple regression. It uses the independent variables x and y in the 

transformations 1/y and x/y. Notice that I have changed the status of the original dependent 
variable y, temporarily making it an independent variable. 

• The regression model has NO constant term. 
 
Likewise, if we have a quadratic polynomial regression model: 
 
y = A + B x + C x2 
 
Our trick yields the following equation that can use OLS regression calculations: 
 
1 = A/y + B x/y + C x2/y 
 
In the case of a simple multiple linear regression model: 
 
y = A + B x + C z 
 
Our trick yields the following equation that can use OLS regression calculations: 
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1 = A/y + B x/y + C z/y 
 
I have offered you the above examples so that you can see the pattern used in the trick that allows us to 
apply OLS regression calculations with any RLSE regression model. Notice that in all of the above 
examples (and for any other regression model), each right-hand-side term in the regression model is 
divided by the dependent variable y. Also notice that each left-hand-side is the new variable α, whose 
values are systematically equal to 1. 
 
The above features allow us to use OLS regression calculation tools, such as the function LSQ on the HP 
39gII. However, we MUST observe the following simple calculation rules. 
 

• The matrix X has no column populated with 1s, since the regression calculations yields NO 
constant term.  

• Each column in matrix X has a term from the modified multiple regression model. 
• The column vector y now represents the new variable α and is populated with 1s. 

 
To obtain the LSRE version for the coefficient of determination, we use the definition for that statistic that 
I showed you earlier. We must also observe the following rules: 
 

• The values of 𝑦�𝑖 used to calculate the LSRE coefficient of determination must be based on the 
original regression model. This is the model that shows variable y as the dependent variable.  

• If you transformed the observed values of y, then you need to work with the transformed values 
and not the original observed ones. Likewise, the values for 𝑦�𝑖 must be for the transformed values 
of y. 

• We cannot use the formula for the OLS coefficient of determination with LSRE regression 
models, because each version is defined differently. That would be like mixing apples and 
oranges! 

General RLSE Regression 
Let’s start with the general case of simple multiple regression, with no transformation of variables. I 
introduced you, in part I, the function MLR2 to calculate the coefficient of determinations and the 
regression coefficients. Table 1 presents function RErMLR2 which is the RLSE counterpart of function 
MLR2. The function RErMLR2 has the following parameters: 
 

• The parameter MatX which represents the matrix X. 
• The parameter VectY which represents the vector y. 

 
The function returns a list containing the coefficient of determination and the regression coefficients (as a 
column matrix). 
 

Statement 
EXPORT RErMLR2(MatX,VectY) 
BEGIN 
  LOCAL i,j,y,Rsqr; 
  LOCAL lstDimX,NumRows,NumCols; 
  LOCAL YMean,Sum1,Sum2,Yhat; 
  LOCAL TMatX,VectOnes,RegCoeff; 
 
  // calculate the number of observations and variables 
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Statement 
  lstDimX:=SIZE(MatX); 
  NumRows:=lstDimX(1);   
  NumCols:=lstDimX(2); 
 
  // create transformation matrices 
  TMatX:=MAKEMAT(1,NumRows,NumCols+1); 
  VectOnes:=MAKEMAT(1,NumRows,1); 
  FOR i FROM 1 TO NumRows DO 
    y:=VectY(i,1); 
    TMatX(i,1):=1/y; 
    FOR j FROM 1 TO NumCols DO 
      TMatX(i,j+1):=MatX(i,j)/y; 
    END; 
  END; 
  // calculate the regression coefficients 
  RegCoeff:=LSQ(TMatX,VectOnes); 
 
  // calculate ymean 
  Sum1:=0; 
  FOR i FROM 1 TO NumRows DO 
    y:=VectY(i,1); 
    Sum1:=Sum1+y;   
  END; 
  YMean:=Sum1/NumRows; 
 
  // calculate the coefficient of determination 
  Sum1:=0; 
  Sum2:=0; 
  FOR i FROM 1 TO NumRows DO 
    y:=VectY(i,1); 
    Yhat:=RegCoeff(1,1); 
    FOR j FROM 1 TO NumCols DO 
      Yhat:=Yhat+RegCoeff(j+1,1)*MatX(i,j); 
    END; 
    Sum1:=Sum1+((Yhat-YMean)/y)^2; 
    Sum2:=Sum2+((y-YMean)/y)^2; 
  END; 
  Rsqr:=Sum1/Sum2;   
  // return the results as a list 
  RETURN {Rsqr,RegCoeff}; 
END; 

 

Table 1 – The source code for function RErMLR2. 
 
Since the topic of LSRE regression is not as popular as OLS regression, I would like to point out the 
following aspects of the source code in Table 1: 
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• The function creates the column vector VectOnes using the MAKEMAT function. This task fills 
the vector VectOnes with 1s. These values remain unchanged during the function execution 
because they represent the values of the variable α. 

• The function creates the transformations matrix TMatX. This matrix has the same number of rows 
as parameter MatX, but has one more column than MatX, 

• The values for the first column of matrix TMatX are 1/y instead of 1 (as is the case in OLS 
regression). 

• The values for the remaining columns of matrix TMatX are xn divided by y. 
• The loop that calculates the LSRE coefficient of determination uses values for 𝑦�𝑖 calculated as a1 

+ a2 x1 + a3 x2 + … + am+1 xm. The column matrix variable RegCoeff contains the regression 
coefficients a1, a2, a3, …, and am+1. 

• The function calculates the LSRE coefficient of determination using the definition that I presented 
for that statistic.  

 
Let’s use function RErMLR2 with the sample data in Table 2. This is the same data I used to test 
function MLR2 in part I. I am reusing the same data so I can compare the results of functions RErMLR2 
and MLR2. 
 

x1 x2 x3 y 
7 25 6 60 
1 29 15 52 
11 56 8 20 
11 31 8 47 
7 52 6 33 

 

Table 2 – Sample data. 
 
You need to store the values of the dependent variable y as a column in matrix M1 and the values of the 
independent variables in matrix M2. Figure 1 shows the contents of matrix M1 which stores the values for 
the column vector y.  
 

 
 

Fig.  1 – The values in matrix M1. 
 
Figure 2 shows the contents of matrix M2 which stores the values for the matrix X.   
 

  
 

Fig.  2 – The values in matrix M2. 
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Let’s use function RErMLR2 with the data in Table 2. Type the following command: 
 
RErMLR2(M2,M1)L1 
 
The above command stores the results in list L1 for further examination if so desired. Figure 3 shows the 
results of executing the function RErMLR2 along with the output of function MLR2 using the same 
data: 
 

  
 

Fig.  3 – The results of executing function RErMLR2 (left) and function MLR2 (right). 
 
The results in Figure 3 show that the RLSE R2 is 0.99959. This value is slightly higher than the OLS R2 
which is 0.99894. The RLSE regression model is: 
 
y = 105.5069  – 1.3710 x1 – 1.0485 x2 – 1.44860 x3 
 
The regression coefficients for both RLSE and OLS regression are somewhat close to each other, as 
expected. 

LSRE Polynomial Regression 
Next we will be working with LSRE polynomial regression. Table 3 shows the source code for the 
function RErPolyReg. This function has the following parameters: 
 

• The parameter DSMat represents the matrix that has the x and y data. 
• The parameter SelXCol designates the column in matrix DSMat which contains the values for x. 
• The parameter SelYCol designates the column in matrix DSMat which contains the values for y. 
• The parameter Order selects the order for the polynomial regression. If you pass an argument of 1 

to this parameter, the function RErPolyReg performs an LSRE linear regression. Passing values 
of 2 and 3 to the parameter Order cause the function to fit the data with a quadratic and cubic 
polynomial, respectively. 

 
The function RErPolyReg returns a list that contains the value of the LSRE coefficient of determination 
and a column matrix containing the regression coefficients. I recommend that you store the results of 
calling function RErPolyReg in a list so that you can further examine and/or use the results. 
 

Statement 
EXPORT RErPolyReg(DSMat,SelXCol,SelYCol,Order) 
BEGIN 
  LOCAL i,j,x,y; 
  LOCAL lstDimX,NumRows; 
  LOCAL MatX,VectOnes,RegCoeff; 
  LOCAL YMean,Sum1,Sum2,Yhat,Rsqr; 
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Statement 
  // get the number of rows 
  lstDimX:=SIZE(DSMat); 
  NumRows:=lstDimX(1); 
   
  // create the regression matrices 
  MatX:=MAKEMAT(1,NumRows,Order+1); 
  VectOnes:=MAKEMAT(1,NumRows,1); 
  // populate the regression matrices 
  FOR i FROM 1 TO NumRows DO 
    y:=DSMat(i,SelYCol); 
    x:=DSMat(i,SelXCol); 
    MatX(i,1):=1/y; 
    FOR j FROM 1 TO Order DO 
      MatX(i,j+1):=(x^j)/y; 
    END;   
  END; 
   
  // calculate the regression coefficients 
  RegCoeff:=LSQ(MatX,VectOnes); 
   
  // calculate ymean 
  Sum1:=0; 
  FOR i FROM 1 TO NumRows DO 
    Sum1:=Sum1+DSMat(i,SelYCol);   
  END; 
  YMean:=Sum1/NumRows; 
   
  // calculate the coefficient of determination 
  Sum1:=0; 
  Sum2:=0; 
  FOR i FROM 1 TO NumRows DO 
    x:=DSMat(i,SelXCol); 
    y:=DSMat(i,SelYCol); 
    Yhat:=RegCoeff(1,1); 
    FOR j FROM 1 TO Order DO   
      Yhat:=Yhat+RegCoeff(j+1,1)*x^j; 
    END; 
    Sum1:=Sum1+((Yhat-YMean)/y)^2; 
    Sum2:=Sum2+((y-YMean)/y)^2; 
  END; 
  Rsqr:=Sum1/Sum2; 
  // return the list of results 
  RETURN {Rsqr,RegCoeff}; 
END; 

 

Table 3 – The source code for function RErPolyReg. 
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Since the topic of LSRE polynomial regression is not as popular as OLS polynomial regression, I would 
like to point out the following aspects of the source code in Table 3: 
 

• The function creates the column vector VectOnes using the MAKEMAT function. This task fills 
the vector VectOnes with 1s. These values remain unchanged during the function execution 
because they represent the values of the variable α. 

• The function creates the transformations matrix MatX to store the terms for the polynomials. The 
number of columns is equal to the polynomial order plus one/ 

• The values for the first column of matrix MatX are 1/y. 
• The values for the remaining columns of matrix MatX are the result of raising x to some power, 

divided by y. 
• The loop that calculates the LSRE coefficient of determination uses values for 𝑦�𝑖 calculated as a1 

+ a2 x + a3 x2 + … + am+1 xm. The column matrix variable RegCoeff contains the regression 
coefficients a1, a2, a3, …, and am+1. 

 
Let’s use the function RErPolyReg to fit a cubic polynomial using the data in Table 4. Enter the data in 
matrix M1. 

x y 
1 5.1 

1.1 4.4 
1.2 4.6 
1.3 4.0 
1.4 3.2 
1.5 3.2 
1.6 2.4 
1.7 2.2 
1.8 1.3 
1.9 2.0 

 

Table 4 – Sample data for a cubic polynomial fit. 
 
To obtain the regression coefficients and coefficient of determination for the cubic polynomial fit using 
the data in Table 4, execute the following command: 
 
RErPolyReg(M1,1,2,3)L1 
 
The first argument of calling function RErPolyReg is the matrix M1 which contains the (x, y) data 
points. The second argument is 1 which tells the function that the data for the independent variable x are 
in column 1 of M1. The third argument is 2, which tells the function that the data for the dependent 
variable y are in column 2 of M1. The last argument is 3, which represent the order of the sought 
polynomial. I assigned the results to list L1 so that I can examine the results later, if I needed to. Figure 4 
shows the output of using function RErPolyReg as well as function PolyReg (from part I)/. 
 

 
 

Fig.  4 – The results of executing function LSRErPolyReg (left) and function PolyReg (right). 
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The results show that R2 is 0.95663 and the fitted polynomial is: 
 
Y = –35.5575 + 93.2646 x – 68.87232 x2 + 15.84677 x3 

 
The value of R2 indicates that the polynomial explains about 95.7% of the variation in the values of y. The 
value of the RLSE R2 is slightly higher than of its OLS counterpart. The coefficients of RLSE polynomial 
regression are quite different in values from their OLS counterpart. 

Power Curve Fitting 
This section looks at the RLSE version of power fitting. I presented function PowerFit in part I. In this 
section I present, in Table 5, its RLSE counterpart, function RErPowerFit. The function RErPowerFit 
has two parameters.  
 

• The first parameter is MatX which is the matrix that contains the values for the independent 
variables.  

• The second parameter is VectY which is the column vector that contains the values for the 
dependent variable.  

 
The function returns a list containing the RLSE coefficient of determination and the column matrix that 
stores the regression coefficients. 
 

Statement 
EXPORT RErPowerFit(MatX,VectY) 
BEGIN 
  LOCAL i,j,y,LnY; 
  LOCAL lstDimX,NumRows,NumCols; 
  LOCAL TMatX,VectOnes,RegCoeff,Rsqr; 
  LOCAL YMean,Sum1,Sum2,Yhat; 
 
  lstDimX:=SIZE(MatX); 
  NumRows:=lstDimX(1); 
  NumCols:=lstDimX(2); 
  TMatX:=MAKEMAT(1,NumRows,NumCols+1); 
  VectOnes:=MAKEMAT(1,NumRows,1); 
  Sum1:=0; 
  FOR i FROM 1 TO NumRows DO 
    LnY:=LN(VectY(i,1)); 
    Sum1:=Sum1+LnY; 
    TMatX(i,1):=1/LnY; 
    FOR j FROM 1 TO NumCols DO 
      TMatX(i,j+1):=LN(MatX(i,j))/LnY; 
    END; 
  END; 
  // calculate regression coefficients 
  RegCoeff:=LSQ(TMatX,VectOnes); 
  // calculate mean ln(y) 
  YMean:=Sum1/NumRows; 
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Statement 
  // calculate coefficient of determination 
  Sum1:=0; 
  Sum2:=0; 
  FOR i FROM 1 TO NumRows DO 
    Yhat:=RegCoeff(1,1); 
    FOR j FROM 1 TO NumCols DO 
      Yhat:=Yhat+RegCoeff(j+1,1)*LN(MatX(i,j)); 
    END; 
    y:=LN(VectY(i,1)); 
    Sum1:=Sum1+((Yhat-YMean)/y)^2; 
    Sum2:=Sum2+((y-YMean)/y)^2; 
  END; 
  Rsqr:=Sum1/Sum2;   
  RETURN {Rsqr,RegCoeff}; 
END; 

 

Table 5 – The source code for function RErPowerFit. 
 

To test the function RErPowerFit let’s used the data in Table 6. 
 

x z t y 
1 1 7 7 
2 1 5 7.7 
3 2 3 7.9 
4 2 1 5.3 
5 3 2 8.4 
6 3 5 11.6 
7 4 8 13.6 
8 4 9 14.3 
9 5 4 12.4 

10 5 2 10.6 
 

Table 6 – Sample data for a power fit. 
 
Store the values in the first three columns of Table 6 in matrix M1. Store the values of the rightmost 
column of Table 6 in the matrix M2. To calculate the coefficient of determination and regression 
coefficients of a power fit between variables x, z, t, and y, execute the following command: 
 
RErPowerFit(M1,M2)L2 
 
Figure 5 shows the results of executing the above command as well as the results from using function 
PowerFit (in Part I). 
 

 
 

Fig.  5 – The results of executing function RErPowerFit (left) and function PowerFit (right). 
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The results show that R2 is 0.98135 and the power fit is: 
 
y = 1.31183 + 0.216033 * ln(x) + 0.1663086 * ln(z) + 0.33546 * ln(t) 
 
Or is in the nonlinear form, 
 
y = 3.712962 * (x^ 0.216033)*(z^0.1663086)*(t^0.33546) 

 
The value of R2 indicates that the power fit explains about 98% of the variation in the values of y. The 
RLSE R2 value is slightly higher than its OLS counterparts. The corresponding coefficients of the RLSE 
and OLS polynomial regression are close to each other, as expected. 

Comparing RLSE and OLS Curve Fitting 
The three HP 39gII RLSE regression functions that I presented in this article produced better values for 
the coefficient of determination than their OLS counterparts. In his paper, Tofallis[1] makes reference to 
the work of Saez and Rittmann[2] that have performed Monte Carlo simulations and found that RLSE 
regression produced better results than OLS regression models. These researchers discovered that the 
RLSE regression models yielded regression coefficients with 90% confidence regions that were 
approximately centered on the true coefficient values. This was not the case with OLS results. 

To Infinity and Beyond! 
You have seen the source code for three RLSE regression functions. You should be able to convert other 
HP 39gII regression functions that I presented in parts II and III into RLSE versions. The tasks include: 
 

• Populating the matrix X with the correct values. The values in the first column are always 1/yi.  
The values for the other columns should be calculated as the values of the independent variables 
(or their transformations) divided by yi. 

• Populating the vector y with the constant 1. 
• Making sure that you correctly calculate the RSLE version of the coefficient of determination. 
•  

Observations and Conclusions 
This article discussed least-squares relative errors. The article first presented some theoretical foundation 
for basic RLSE calculations. The article also showed you how apply a trick to use OLS regression 
calculations for RLSE regression. You also learned about calculating the RLSE coefficient of 
determination. The article also presented three RLSE regression functions for the HP 39gII. These 
functions are the RSLE versions of OLS regression functions that appear in part I of this series. 
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From The Editor – Issue 30 
 
It is January and a new year is starting.  Change is part of most plans for a better 2013.  Electronics 
enthusiasts immediately think of the Consumer Electronics Show and HP is thinking about teachers.   
 
Education is a primary application for computational capability and certainly calculators play an 
important role as you may read about in the lead article for this issue. 
 
HP Solve will undergo a change in the applications support of calculators with its major emphasizes 
switching from that of a technical newsletter to that of an educational newsletter.  Grades 6 – 20 will be 
the operational level of content for teachers of science, technology, engineering, and mathematics – 
STEM.  The April issue will reflect this change with a new editor. 
 
Correction for issue 29 – Customer Corner interview with Gary Tenzer.  He said that he visited HP in 
1972 when they were in Corvallis.  Actually, in 1972 they were still in Cupertino and moved to Corvallis 
a year or so later. 
 

Here is the content of this issue 
 
S01 – Taming Computer chaos in the classroom with HP Classroom Manager   Every teacher dreams 
of better classroom control and HP has applied its calculator expertise to a program that provides better 
student attention and performance. 
 
S02 – Continued Fractions:  A Step-by-Step Turorial, with User RPL Implementations   by Joseph 
K. Horn provides a very clear and easily understandable process for converting decimal fractions and 
simple fractions into continued fractions.  You will remember continued fractions as those multiple “one 
over” fractions that seemingly go on and on. 
 
S03 –QUIZ – How Well Do You Know RPN?  by your editor.  Here is fun way to remember all those 
RPN Tips that appeared in every HP Solve issue up to issue 20.  Take the quiz and count your points to 
compare to the table at the end of the article. 
 
S04 – HP 39gII Regression:  Part I Exploring Statistical Regression with the HP 39gII  by Namir 
Shammas.  As the power of calculators increases so do the advanced math problems they conveniently 
solve.  Namir has written a series of four articles related to Regression.  These articles include extensive 
programs for various forms of regression analysis. 
 
S05 – HP 39gII Regression:  Part II Linearized Regression  by Namir Shammas.    
 
S06 – HP 39gII Regression:  Part III The Best Curve Fits in Town!  by Namir Shammas.  WOW!  
Look at these.   
1. The best regression models for two variables, fitting up to 81 regression models. 
2. The best regression models for three variables, fitting up to 729 regression models. 
3. The best regression models for four variables fitting up to 6561 regression models. 
4. The best polynomial for two variables.  
 
S07 – HP 39gII Regression:  Part IV Least-Squares Relative Error Regression  by Namir Shammas.  
A Calculator trick important to this technique is described.  As with the previous three parts programs are 
included. 
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S08 – Regular Columns   
  ♦ From the editor.   

  ♦ One Minute Marvels.  
  ♦ HP User Community News – Felix’s Bibliography, A Little Bit of HP History 
  ♦ Identifying a Voyager Series Calculator, Part II. 
 
 
That is it for my last issue.  I hope you enjoy it.   
 
X < > Y,          
 
Richard  
 
Email me at:  hpsolve@hp.com   or   rjnelsoncf@cox.net   
 

HP 48 One Minute Marvels No. 17 – DOW Addition 
 
One Minute Marvels, OMMs, are short, efficient, unusual, and fun HP 48 programs that may be entered 
into your machine in a minute or less.  These programs were developed on the HP 48, but they will 
usually run on the HP 49 and HP 50 as well.  Note the HP48 byte count is for the program only. 
 
Day of Week routine text addition  
 

In issue # 26, page 7, OMM No. 13 listed two routines to determine the Day of week, DOW given a date.  
I was reading about a mathematical “discovery” of Quaterions that occurred on October 16, 1843.  The 
day of the week was also given as Monday.  I reached for my calculator to check the DOW with ‘dow2’  
and I realized that the actual day in text was not provided so I wrote a simple routine to provide it.  The 
news article DOW was correct. 
 
I am reproducing the two routines of OMM No. 13 for reader convenience followed by the conversion 
routine, ‘dow3’, to convert the output number to a day. 
 
Input a standard date in mm.ddyyyy format and ‘dow1’ (system flag –42 clear) returns a three-letter day.  
 

‘dow1’  <<  0  TSTR  1  3  SUB  >> 
 

5 commands,  22.5 Bytes,  #  A8D0h. Timing: 8.211999 ⇒ “SAT” in 26.2_ms. 
 
Joseph K. Horn suggests using DDAYS and a known date to calculate the day of week.  The known date 
is a Sunday (year 3,000) and is selected to have the day and month the same so the system flag –42 setting 
doesn‘t matter.  He had to “hunt” for a date that met these requirements.  Given a date in mm.ddyyyy 
format, ‘dow2’ returns a number between 0 (Sunday) and 6 (Saturday).  Example:  HHC 2011date 
9.242011, ‘dow2’ returns 6 (Saturday). 
 
‘dow2’  <<  2.023  SWAP  DDAYS  7  MOD  >>  
 

5 commands, 30.5 bytes, #B181h. Timing: 1 ⇒0 in 7.17_ms.   
 
Two different techniques are used to return the day of week given a date.  Both use five commands, but 
one (‘dow2’) is 3.7 times faster.  ‘dow3’ adds a day number conversion so you don’t have to remember 
that Sunday is zero.  You may simply add it to the end of ‘dow2’  Note the ‘dow3’ is fast enough that the 
extreme speed difference between the two  DOW routines (‘dow1’  ‘dow2’) is still valid. 
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‘dow3’  << 1 + { “SUN” “MON” “TUE” “WED” “THR” “FRI” “SAT” } SWAP GET >> 
 

5 commands, 81 bytes, #44DEh. Timing: 1 ⇒ “MION” in 16.5_ms 
 
How ‘dow3’ works.  This very straight forward routine assumes a digit 0 to 6 on the stack.  It doesn’t 
need to check for valid inputs. ‘dow2’ leaves a digit on the stack that has one added to make the input 1 to 
7 instead of 0 to 6.  The third command is a list containing the abbreviated days of the week – you may 
make these whatever you wish.  The input for the get command is the position number of the item in the 
list so the stack levels 1 & 2 must be exchanged with SWAP before GET is executed. 
 
Adding ‘dow3’ to ‘dow2’ makes the program complete and more practical because of infrequent use.  
When you do need DOW, however, it is very nice because calendars covering the 8,419 years that ‘dow2’ 
covers are usually not conveniently available. 
 
 

 

HP User Community News 
 
Calculator Bibliography  As described in the HHC 2012 Report in issue # 29, pages 13 & 14 Felix 
Gross (Germany) is working on the most complete bibliography ever compiled of Calculator articles.  If 
an HP Solve reader is looking for any calculator information he should start with Felix’s bibliography.  
Presently it is nearly 300 pages and it covers all worldwide publications.  If you have an obscure 
publication you would like to have added to the bibliography – or check on one – you may contact Felix 
at:  Felix Gross (felix.gross@alumni.ethz.ch)  
 
CES 2013 
The Consumer Electronics Show, CES, was January 8-12 this year.  CES is the largest show of its kind 
and some observers feel that it has gotten too big.  This was 50th show and I have attended nearly every 
one since the beginning when there were two shows each year.  Some of the largest companies did not 
exhibit this year because they felt that other venues were more effective in reaching the intended 
audience.  There wasn’t a single major calculator exhibitor this year for the first time.  The NCTM 
conference in April in Denver is where calculators will be the star. 
 
Some of HP’s loyal users, however, still gathered for dinner during CES as shown in the photo below. 
 

 
 
Ed note:  The article reproduced below was written in early 1999 based on the HP49g introduction of 
May 21, 1999.  Time passes so quickly that even though you were there if you don’t make a few notes the 
historical details are easy to forget. 
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A Little Bit of HP Calculator History 
Jake Schwartz 

 
Roughly in 1993 at the time when the HP48GX was released, the calculator R&D was in the process of 
being transferred from Corvallis to Singapore.  At this point it seemed that the Singapore people wished 
to include the Corvallis folks in their efforts, and thus they used a combined team of developers from both 
locations to design the HP38G.  An attempt was made to crack the high-school market with this machine, 
and my understanding was that only a handful of HP individuals were assigned the task of educating the 
teachers about the merits of the 38.  This paled in comparison to the literally hundreds of TI folks who 
had been doing the same thing for a handful of years.  As a result, the 38 seemed to go virtually unnoticed 
in comparison to the massive TI effort which has succeeded in making their graphing models ubiquitous 
in the school market.  Meanwhile, the HP calculator zealots wrote the HP38G off as a failed attempt to be 
like the others and we continued playing with our HP48G-series toys. 
 
In 1995, the U.S. HP Handheld User's Conference was held in Minneapolis, and HP Singapore's Kheng 
Joo Khaw (then head of palmtops and calculators) was there to speak on current HP affairs.  He mainly 
was talking about the advent of the Windows CE units, and how HP had decided that they should use a 
"standard" windowing O.S. in order to make any headway in the growing handheld market (This was 
despite a successful run with the DOS-based HP 95/100/200LX models).  When we asked him about 
calculators and what would happen next, he indicated that calculators were not their current focus. 
One year later, at the 1996 HP Handheld Conference in Anaheim, Khaw was there again, speaking on 
palmtops and we asked again about the destiny of calculators.  And again, he said that they felt that 
calculators didn't need to be updated at this time, and when they did, there would be some activity in that 
 area.  He even went as far to say that the HP48G-series was already too complicated and that it intimi-
dated people, so he saw no need to extend the high end.  We felt at that time that effectively, calculators 
were as good as dead at HP.  (I shot the videotapes from these conferences if anyone is interested.) 
 
In June of 1997, our Philadelphia Area HP Handheld Club (still going since 1978) hosted HP's Eric Vogel 
(who worked on handheld products since 1976).  He had recently switched from Corvallis to an 
instrumentation group which developed the handheld Logic Dart.  At the end of his enlightening 4-hour 
presentation, we asked him about his thoughts on whether there might be another top-of-the-line 
calculator from Hewlett-Packard.  Eric was convinced that the calculator world had seen its heyday and it 
was time to move on, considering what could be done on any PC on anybody's desk these days.  It was 
sort of a bittersweet moment...we understood his point of view but didn't really want to believe it. 
 
The Summer went by and the British HPCC group hosted their Fifteenth Anniversary conference in 
London in September of 1997, also denoting the 25th birthday of the HP35.  Something different 
happened there...it was announced that a new calculator team would be forming officially on November 
1st in Australia.  Apparently the Singapore group really *wasn't* going to do anything, so this new band 
of developers asked and got the go-ahead to take the effort over.  It was precisely at this event when the 
Australians first met the Meta Kernel team and also saw demonstrations of MK, Erable and ALG48 for 
the very first time.  Obviously this weekend made a significant impression.  Following these demos, 
Richard Nelson asked for a show of hands as to how many people would be willing to buy an HP48 
which contained these tools built into ROM.  Of course, the vast majority voted in the affirmative. 
 
It was realized then that the ACO group would be on their own, having to prove themselves without the 
benefit of any other related existing products which already represented a stream of income for them. 
 
Back at home, we began to speculate on how the new group (consisting mainly of people who were not 
from the old Corvallis team) could make their mark.  I speculated that a "ready", "set", "go" approach  
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might allow them to ease their way into the industry.  The HP48G+ was their first product - and truly, this 
could represent ACO's "dipping its toe into the water".  Then the HP6S - a completely new but entry-level 
unit - followed.  And now, they have announced their intentions of releasing the HP49G (True, over the 
past quarter-century HP has always said that they don't talk about unannounced products, so this is a 
major departure).  With all the firmware overhauling which was described in Jean-Yves Avenard's 
descriptive posting, this is pretty amazing, considering that the team has only been together a year and a 
half! 
 
Knowing that ACO absolutely MUST generate revenue in order to stay in business, it makes sense that 
they would chase a larger market in which they previously haven't had a significant presence.  In addition, 
I think that the message which we tried to impose on the ACO people in London - that these calculators 
still matter very much to professionals as well as students - did sink in.  Just like actors who must first 
work day-to-day jobs to make ends meet at the beginnings of their careers, so too must ACO put cash into 
its coffers in order to afford the freedom to develop the kind of machines we would prefer to use.  Let's 
hope that the 49G is a stepping stone to The Next Big Thing. 
 
Jake Schwartz 
 

Identifying a Voyager Series Calculator – Part II 
 
In issue # 29 I gave a procedure for identifying the model number of the five original voyager series of 
calculators if the HP logo was missing.  I mentioned that I often had to help people identify the model 
number while speaking over the telephone.  
 

The procedure I gave was less 
suitable for a verbal process.   
 
The simplest way to go 
through the procedure verbally 
is to answer a series of four 
questions regarding the upper 
right corner divide key as 
shown in Fig. 1.  There are 
gold/yellow and blue notations 
above and on the sloping 
surface of the key.  The 
question flow chart asks about 
the color and text of those 
notations. 
 

 
 

Fig. 1 – Voyager ÷ key, which 
model is it? 

 
 

Fig. 2 – Question flow chart to determine model number if HP logo is missing. 
 
HP Solve # 30 Page 91                                        Page 5 of  6 



Here is a challenge for the reader.  Can you make a simpler flow chart of less than four questions?  Refer 
to the five key notations shown below.   
 
If you are able to visually compare the calculator with the images below you can just ask one question.  
Which photo matches your calculator divide key?  Verbally you could also ask the user to just tell you 
what the notations are and you pick the correct photo. 
 

     
           HP-10C                    HP-11C                     HP-12C                   HP-15C                     HP-16C 
 

About the Editor 
 

 

Richard J. Nelson, a long time HP Calculator enthusiast, was editor and publisher of HP-65 
Notes, The PPC Journal, The PPC Calculator Journal, and the CHHU Chronicle.  He has 
also had articles published in HP65 Key Note and HP Key Notes.  As an Electronics 
Engineer turned technical writer Richard has published hundreds of articles discussing all 
aspects of HP Calculators.  His work may be found on the Internet and the HCC websites 
at: hhuc.us .  He proposed and published the PPC ROM and actively contributed to the UK 
HPCC book, RCL 20.  His primary calculator interest is the User Interface.   Richard may 
be reached at:  rjnelsoncf@cox.net  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
HP Solve # 30 Page 92                                        Page 6 of  6                                     Last page of issue 30. 

http://hhuc.us/
mailto:rjnelsoncf@cox.net

	HP_Calculator_eNL_07_July_2012
	Refurb_July_PDF_page1
	bar_1
	S01_Jul12_College Promo
	bar_2
	S02_Jul12_China Project
	bar_2
	S03_Jul12_Ostrowski Method V4a
	bar_2
	S04_Jul12_Store & Recall on HP CaLCS V5
	bar_2
	S05_Jul12_Measuring Calc Current V2
	bar_2
	S06_Jul12_Is that Calc Answer Correct V1
	bar_2
	S07_Jul12_Electronics Values V1a
	bar_2
	S08_Jul12_From the Editor V1
	bar_3
	S09_Jul12_Calc usage Is Effic important V1c

	bar_1
	S01_Jul12_College Promo
	bar_2
	S03_Jul12_Ostrowski Method V4a
	bar_2
	S04_Jul12_Store & Recall on HP CaLCS V5
	bar_2
	S05_Jul12_Measuring Calc Current V2
	bar_2
	S06_Jul12_Is that Calc Answer Correct V1
	bar_2
	S07_Jul12_Electronics Values V1a
	bar_2
	S08_Jul12_From the Editor V1
	bar_3
	S09_Jul12_Calc usage Is Effic important V1c
	S04_HP39gII_Regression_part1_V1a.pdf
	Introduction
	The Basics
	First Things First!
	Polynomial Fitting
	Power Curve Fitting
	About Entering the Source Code
	Observations and Conclusions
	References

	S05_HP39gII_Regression_part2_V1a.pdf
	Introduction
	Linearized Regression for Two Variables
	Linearized Regression for Three Variables
	Regression Beyond Three Variables
	Further Exploring the Power of Function MLRX
	Observations and Conclusions
	References

	S06_HP39gII_Regression_part3_V2a.pdf
	Introduction
	The Best Regression Model for Two Variables
	The Best Regression Model for Three Variables
	The Best Polynomial Fit
	Observations and Conclusions
	Appendix
	References

	Blank Page
	S06_HP39gII_Regression_part3_V2a.pdf
	Introduction
	The Best Regression Model for Two Variables
	The Best Regression Model for Three Variables
	The Best Polynomial Fit
	Observations and Conclusions
	Appendix
	References

	Blank Page
	S07_HP39gII_Regression_part4_V1a.pdf
	Introduction
	LSRE Regression 101
	A Calculation Trick
	General RLSE Regression
	LSRE Polynomial Regression
	Power Curve Fitting
	Comparing RLSE and OLS Curve Fitting
	To Infinity and Beyond!
	Observations and Conclusions
	References




